Multidimensional welfare rankings under weight
imprecision

Stergios Athanasoglou

European Commission, JRC-Ispra
Institute for the Protection and the Security of the Citizen
Econometrics and Applied Statistics Unit

[The views expressed are purely those of the author and may not be regarded as
stating an official position of the European Commission.]

March 18, 2014



Multidimensional welfare

» Many aspects of social well-being are intrinsically multidimensional.

> E.g., development, poverty, inequality cannot be fully captured by simple,
exclusively income-based, measures.

> Originating in the powerful conceptual writings of Amartya Sen, the idea
of multidimensional well-being has had a deep influence on academia as
well as policy.

> Indeed, the primary tools that the UN uses to measure development and
poverty, the Human Development and Multidimensional Poverty indices
(HDI, MPI) reflect the above concerns.



Multidimensional welfare measurement

> Need to compare and eventually order possible alternatives (countries,
policies, etc) on the basis of multidimensional information.

> Welfare indices (such as the HDI and MPI) approach this task by
integrating the various dimensions of well-being into a scalar measure.
This is generally achieved by assigning weights to the different dimensions
and, in some fashion, aggregating over them.

> Often these choices are not grounded in economic theory or a coherent
normative framework, sparking backlash (Ravallion, 2012).

» For instance, there is disagreement as to whether multidimensional
poverty should be communicated through a “dashboard” of indices
(Ravallion, 2012), or an aggregate scalar measure such as the MPI
(Alkire and Foster, 2011).



The issue of weights

> Assume that a functional form for the aggregation function is in place
(justified by normative desiderata), but weights are undetermined.

» Their choice can be fraught with complex philosophical and practical
dilemmas, despite a multitude of proposed techniques (Foster and Sen,
1997; Decancq and Lugo, 2013).

> Indeed, there is frequently no single “right” weighting scheme and we are
justified, if not compelled to, consider the effect of many different weights
at once.

» Such an analysis would serve two goals:
(a) to examine how robust a given ranking of alternatives is to changes

in weights, and

(b) to determine a compromise ranking that is in some sense “optimal”
in the presence of weight imprecision.



Previous work

> Monte Carlo simulation in the context of broader uncertainty/sensitivity
analyses (Saisana et al. 2005).

> Duclos et al. (2006, 2011) studied multidimensional poverty/inequality
comparisons using ideas from stochastic dominance. They established an
analytic criterion for determining whether a (pairwise) poverty
comparison is robust within a large class of indices.

> Anderson et al. (2011) imposed monotonicity and quasiconcavity on the
aggregation function and derived bounds on welfare levels.

> Foster et al. (2013) studied linear indices and parameterized weight
imprecision with the e-contamination model of Bayesian statistics.
Focused on pairwise relations.

> Pinar et al. (2013) examined the HDI index and used ideas from
stochastic dominance to determine the set of weights that results in
best-case human development over time.



This paper’s contribution and added value

> | propose a theoretical framework that yields consensus rankings in the
presence of weight imprecision, which is formally rooted in the social
choice/voting literature.

» The approach goes beyond existing work in the following ways:

(i) It produces a set of complete consensus rankings of the alternatives,
not welfare bounds or pairwise dominance relations.

(i) It can be justified on axiomatic grounds (thus guarding against
charges of being ad-hoc).

(iii) It can be efficiently implemented in high-dimensional settings of
multiple alternatives and welfare criteria (unlike techniques based on
stochastic dominance).



The paper in a nutshell

> Consider a vector of weights as a voter and a continuum of weights as an
electorate.

> With this voting construct in mind, Kemeny's rule from social choice
theory is introduced as a means of aggregating the preferences of many
plausible choices of weights.

» The axiomatic characterization of Kemeny's rule due to Young and
Levenglick (1978) and Young (1988) is shown to extend to the present
context.

> An efficient graph-theoretic algorithm is developed to compute or
approximate the set of Kemeny optimal rankings.

» Further analytic results are derived for a relevant special case of the
model.

> The model is applied to the ARWU index of Shanghai University, a
popular and controversial index ranking academic institutions across the
world. High problem dimensionality means it is a good “proof of
concept”.



Model description

> Set of alternatives A indexed by a=1,2,..., A and set of indicators 7
indexed by i =1,2,..., /.

> Let x,; € [0,1] denote alternative a's normalized value of indicator i,
xa € R’ its “achievement” (column) vector, and X4 C [0,1]"** the
resulting achievement matrix.

» Performance across indicators is weighted by a vector w belonging in the
simplex A" = {weR': w>0, YL, w =1}

> Welfare corresponding to achievement vector x and w is given by a
real-valued function u(x, w).

> The welfare function is purposely left general in order to accommodate
many different multidimensional concepts.



Weight imprecision

> Now, define an importance function f on the simplex A'~?, satisfying
f(w)>0forallwe A" and 0 < [,, , f(w)dw < +o0.

> f models imprecise beliefs regarding the “correct” set of weights to use.

> It may be set a priori by the decision-maker, or it may be arrived at by
aggregating the views of agents to be ranked.

> In the case of the HDI, f could be set in the following manner: ask each
country ¢ to provide its importance function £ on A% and then set

f=>_f.

» Work with continuous f, but model can be straightforwardly extended to
account for discrete importance functions on a finite (or countably
infinite) subset of weights belonging in A'~*.



Weights

as voters

Define a profile L to be a triplet L = (X4, f, u), and let £ denote the
space of all profiles.

Given a profile L, suppose we think of weight vector w as an imaginary
voter who (weakly) prefers a; over a; if and only if u(xa,w) > u(xa;, w)
(U W) > Uy, W)).

Thus, voter w's preferences will be expressed as a (possibly partial)
ranking of the alternatives.

Construct an electorate of voters by considering each w € A'~! and
introducing f(w) copies of itself. Thus, the greater f(w) is, the more
voters holding w's preferences are introduced. This results in a
continuum of voters £(f) of finite measure.



Connections with social choice

> What would constitute a “good” way of aggregating the preferences of all
weight vectors, suitably weighted by the importance a decision maker
places on them?

> More abstractly: Given a set of individual ranked preferences, what voting
rule should society use to determine a consensus ranking? What
properties should a compromise solution aspire to satisfy? What tradeoffs
need to be reconciled?

» Fundamental questions, whose modern roots lie in the work of Condorcet
and Borda.

> Arrow's impossibility theorem is a classical result along this vein.



Election

matrices

Given a profile L = (X4, f, u), define the election (proportion) matrix Y-
(V).

Yir (Vi) defines the net majority (proportion) of voters within £(f)
preferring a; to a;. Matrix Y (V') summarizes this information for all
pairs of alternatives.

Generally, Y! and V! need to be computed numerically.

However, analytic solutions are possible for some compelling special cases
(see Section 5 in paper).



An example: f(w) =1 and u linear
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> £(f) equals the entire simplex with uniform importance.

> Y,-J-L is the difference between the volumes of the BLUE and RED regions.

> \/,»J-L is the ratio of the volumes of the BLUE region and the entire simplex.



Kemeny's rule

> If Ry and R are rankings, their pairwise disagreement (or Kendall-T
distance) is given by the number of pairs (aj, a;) such that
Rl(a,-) > Rl(aj) and Rz(a,') < Rz(aj).

> Given a set of voters who each submit ordered preferences on a set of
alternatives, Kemeny's rule (Kemeny, 1959) produces a ranking that
minimizes the sum of its pairwise disagreements with respect to voter
preferences.

> Applying this concept to infinite electorate £(f), the Kemeny-optimal set
of rankings K" can be simplified to (R4 denotes the set of rankings of
alternatives in A)

K(L) = K" = argmin Z 1{R(a;) < R(a;)}Y;.

RERA (5,0)eA%A



Normative analysis

» A rule is a function from the set of profiles to the set of nonempty
subsets of rankings.

» Can we justify axiomatically the adoption of rule K as a means of ranking
alternatives? In what sense would it be “better” than other methods we
could employ?

> Yes, b/c it turns out that K is the only rule satisfying a set of desirable
axioms.



Anonymity, Neutrality, Unanimity, Condorcet

[For rigorous definitions of the following Axioms please see the paper.]

Axiom 1. A rule ¢ is anonymous if it depends only on the number of voters
submitting ranking R as their preference, for all rankings R.

Axiom 2. A rule ¢ is neutral if the identity of an alternative does not affect the
rank it receives.

Axiom 3. A rule ¢ is unanimous if, when all weights submit the same ranking of the
alternatives, then the rule picks this ranking.

Axiom 4. A rule ¢ is extended-Condorcet if it respects the majority wishes of the
electorate, whenever these do not involve intransitivities (i.e., situations
where a majority of voters prefer A to B, B to C and C to A).



Reinforcement

Axiom 5. A rule ¢ satisfies reinforcement if it acknowledges and reinforces
pre-existing consensus, thus imposing a degree of consistency to the
aggregation process.

» Consider the HDI, and suppose Africa and Europe have completely
differing opinions regarding the weights of the three dimensions of the
HDI.

> African countries only want to consider weights w s.t.
WH > W) > WE.

» European countries only want to consider weights w s.t.
WE > WH > Wj.

» Suppose the UN chooses a method of ranking countries that, when
considering the opinions of A and E separately leads to the same
consensus ranking. In that case, reinforcement requires that the UN’s
method, when considering the preferences of A and E jointly, not disturb
their pre-existing consensus.



Local independence of irrelevant alternatives

Axiom 6. A rule ¢ satisfies local independence of irrelevant alternatives (LIIA) if the
relative order of alternatives that are ranked “together” in a consensus
ranking does not change, when we apply the rule to the restricted
problem that focuses just on these alternatives and ignores all others.

> Usually such contiguous intervals correspond to meaningful categories of
alternatives.

> Suppose we rank the 100 best universities in the world. We would prefer
the relative ordering of the top 20 (representing, say, Tier 1 institutions),
to remain unchanged if we re-apply the rule ignoring those universities
ranked 91-100, 51-100, or even the entire 21-100 for that matter.



The axiomatic characterization

Theorem 1

(i) On the domain of profiles £, K satisfies anonymity, neutrality,
reinforcement, extended-Condorcet, unanimity, and LIIA.

(i) Let Y9 denote the set of rational skew-symmetric matrices whose
rows and columns are indexed by the elements of A. On the
restricted domain £9 = {L € £L: Y" € Y?}, K uniquely satisfies
anonymity, neutrality, reinforcement, unanimity, and LIIA.

> Largely a restatement of results by Young (1974, 1988), Young and
Levenglick (1978).

» But care must be taken to ensure that their proofs extend to the current,
non-standard setting.



(Important) computational issues

» Unfortunately, computing K is NP-hard (Bartholdi et al., 1989), even
when the number of indicators is just four (Dwork et al., 2001).

» The main difficulty arises from Condorcet cycles, which imply intransitive
majority pairwise preferences. Thus, it is important to identify and, in
some fashion, resolve these cycles.

> Using classical results from discrete algorithms (Tarjan, 1972) and recent
approximation algorithms (Van Zuylen and Williamson, 2009), | propose
a graph theoretic algorithm that computes or provides a provably-good
approximation of K (see Section 4 of the paper).

> If the size of Condorcet cycles is “small enough”, then one gets an exact
solution.



A special case of the model |: generalized weighted means

> A family of welfare functions that is particularly popular in many policy
contexts are known as generalized weighted means (Decancq and Lugo,
2013).

> Parameterized by v € R, they are denoted by u” and satisfy

vy = | (Sam)} a0
H;:l X" 7=0

2=

> ﬁ: elasticity of substitution between achievements.

> When v = 1(0) we recover the weighted arithmetic (geometric) mean. As
v — 4o00(—00), u”(x,w) converges to the maximum (minimum)
coordinate of x.



A special case of the model Il: e-contamination

> We are given an initial vector of weights w.

> Suppose that we are willing to grant equal consideration to weights
deviating from w that belong to the set W€, where

I
W6(1e)w+eA’1{we§R’: w > (1-e)Ww, ZW,-1}.
i=1

> Parameter ¢ € [0, 1] measures the imprecision associated with w. Can be
modeled with an importance function 7 assigning weight 1 to all
w € W€ and 0 everywhere else.

> Originally developed in Bayesian analysis (Berger and Berliner, 1986), this
way of parameterizing imprecision is referred to as e-contamination.
Studied also in micro theory (Nishimura and Ozaki, 2006; Kopylov,
2009).

> First introduced by Foster et al. (2013) in the context of composite
indices of welfare.



How could ¢ be set?

> Statistically, the parameter € may be interpreted as the amount of error
attached to the prior w.

> In our context, the choice of ¢ is largely subjective and should be decided
in close consultation with the policy makers.

> Nevertheless, the simple structure of e-contamination may inform this
process by shedding light on the implications of different choices.

(i) Places a uniform bound on allowable percentage decrease of an
indicator’s weight with respect to w, i.e.

{@ >1—¢, VieI} s {wi e [wi—ewi,wi + (1 —w)], VieZI}.

wi

(ii) Serves as a guide for policy makers who wish to “cover” a target
percentage of all possible vectors of weights.

Vol (W) -1

Vol (A1) —



A graphical illustration of e-contamination
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Pairwise comparisons when v = u” and f = f°¢

AW

W,

u¥ (xq,w) > u¥ (xal., W)

uy(xai, w) <u¥ (xaj, w)

W,

‘ uY (xq,w) = u¥ (xaj,w) ‘

> Given w, ¢ >0 and v € R, let \/U“’ denote the proportion of weights
favoring a; over a;.

> V7 (V7)) s the ratio of the volume of the smaller BLUE (RED)
region to the volume of the inner triangle. Analogously for e;.



Analytic insights

Theorem 2

When a; and a; do not yield identical welfare under w, V" varies
monotonically in the imprecision € attached to w. It is decreasing if a;
initially dominates a; and increasing if it is dominated by it. Conversely,
when W yields welfare for a; and aj, then \/j'y remains constant as we
vary e.

Theorem 3

Simple geometric structure allows us to exploit the results of Lawrence

(1991) and provide an explicit formula for V7.



Proof of concept: the ARWU index

> Shanghai University’s Academic Ranking of World Universities (ARWU),
a popular composite index measuring research excellence in academic
institutions.

> 6 criteria: (1) No. alumni winning Nobel prizes/Fields medals, (2) No.
faculty winning Nobel prizes/Fields medals; (3) highly-cited researchers;
(4) papers in Nature/Science; (5) papers indexed in leading citation
indices; (6) per capita academic performance.

> ARWU score u(x,w) = Z?:1 wix;, and warny = (.1,.2,.2,.2,.2,.1).

» Despite its increasing influence and popularity, the ARWU index has been
criticized on many grounds, including its non-robustness to changes in
weights (Saisana et al., 2011).

» The controversy surrounding this index, in combination with its high
dimensionality (100 universities, 6 criteria) make it a good application
area for the model.



Applying the model

> Focus on the top-100 universities reported in the 2013 ARWU rankings,
denoted by Ajiqo.

» | consider imprecision over the ARWU index weights via e—contamination
with W = wagpwy and € € {1/6,]./37 1/2}.

» For convenience, denote by K¢ the Kemeny-optimal ranking of
universities in A100 when applying the method for different values of e.

» Differences K — K¢ grow as we increase ¢, and are much more
pronounced for universities in the 51-100 range.

» There are moreover a handful of really substantial swings in rankings. For
instance, the ENS-Paris was ranked 71st in the official 2013 ARWU
ranking, whereas its Kemeny-optimal ranks for e =1/6,1/3,1/2 are 62,
54, and 49, respectively.



Numerical application: ARWU index

80

Figure : 2013 ARWU Top-100: K° — K*.
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Recap

Judgments based on composite indices of welfare depend, sometimes
critically, on how different dimensions of performance are weighted.

As there is frequently no single “right” way to assign such weights, it is
important to take this imprecision into account in a systematic and
transparent manner.

In this paper | have drawn from the theory of social choice to present a
procedure for determining a ranking of the relevant alternatives that is
normatively compelling and statistically interpretable.

Developed graph-theoretic algorithm to implement rule and the
applicability of the proposed framework was illustrated through a
numerical example based on Shanghai University’'s ARWU index.

Broader connections with decision-theoretic models of Knightian
uncertainty can be explored.



