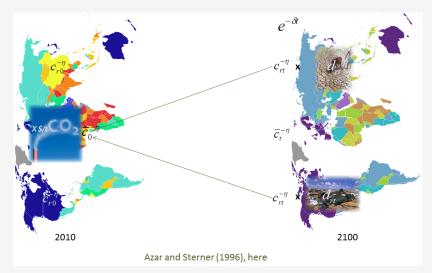
Inequalities and the Social Cost of Carbon

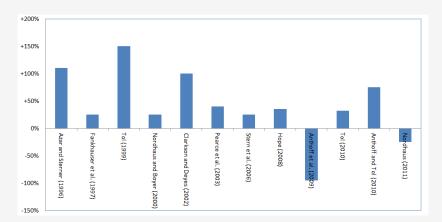
Johannes Emmerling¹ David Anthoff²

¹Fondazione Eni Enrico Mattei (FEEM) ²University of California, Berkeley


FEEM/IEFE Seminar, September 6th, 2012

Motivation

- Equity aspects in the evaluation of Climate Change
 - Inter-generational Equity ("discounting", alternative approaches (maxmin, LRS)
 - Intra-generational Equity ("equity weighting")
- Social preferences in the two dimensions might be different (Atkinson et al. 2009)
- Integrated Assessment Models capture inequity aversion through a single utility function
- Inequality is considered only between (arbitrarily cut) regions


Motivation

Discounting and equity weighting *jointly* is a complex picture

The effect of Equity Weighting

Does equity weighting increase or decrease the Social Cost of Carbon?

Different approaches, inequality aversion parameters, discount rates

Contributions of the paper

- Inequality aversion between and within generations (Nordhaus, 2011)
- Disentangling resistance to intertemporal substitution (η) and inequality aversion (γ)

 \implies allows discounting and equity weighting to be separable

- The level of disaggregation
 - Inequality on the between-country level, not between (arbitrary) regions
 - Allow for non-constant per-capita damages within regions

Outline

1 Introduction

- 2 Discounting and Equity Weighting
- 3 Inequality between countries
- 4 Numerical results

5 Conclusion

What does utility as log of consumption imply?

Intertemporal Substitution:

 Completely altruistic Social Planner should discount future cash flows just at the growth rate of consumption

Risk aversion

The lottery of having 1 or 2 Mio. with eqal probability is equivalent to a certain amount of 1.41 Mio.

Inequality aversion

 One dollar to a Chinese is around ten times "worth" a dollar to an American

Discounting and Inequality

Discount factor: weight based on marginal utility

$$DF_{rt} = rac{c_{rt}^{-\eta}}{c_{r0}^{-\eta}}(1+
ho)^{-t}$$

- Choice of the appropriate discount rate not obvious when considering inequality
- \implies inequality-adjusted discount rate (Gollier 2010, Emmerling 2010) r_t^{in}
 - Convergence ⇒ higher discount rate ⇒ SCC lower

Equity weighting

- Reasons for the use of Equity Weights in CBA
 - income distribution might not be optimal
 - transfers implied by optimality might not be carried out
 - one dollar = one vote
- Equity Weighting:
 - weighty based on a Utilitarian SWF and CRRA utility
 weights w_{it} = ^{U'(c_{it})}/_{U'(c̄t)} = (^{c̄t}/_{cit})^η based on marginal utility of income
- similar to the discount factors presented before

Equity weighting

 Consider R different regions r at time t: marginal impacts or "damages" d_{rt} to compute the Social Cost of Carbon V_x

$$V_{x} = \sum_{t=1}^{T} \sum_{r=1}^{R} P_{rt} \underbrace{(1+\rho)^{-t} \frac{c_{rt}^{-\eta}}{c_{r0}}}_{e^{-rr_{t}t}} \underbrace{\frac{c_{rt}^{-\eta}}{c_{rt}}}_{weights w_{rt}} d_{rt}$$

The use of region-specific discount rates does not seem justifiable

"Intertemporal approach"

$$W_x = \sum_{t=1}^T \sum_{r=1}^R P_{rt} \frac{c_{rt}^{-\eta}}{c_{x0}^{-\eta}} (1+\rho)^{-t} d_{rt}$$

Monetarization with marginal utility of consumption in region x today

Disentangling both concepts

- The curvature of U, i.e., η , determines risk aversion, inequality aversion, and resistance to intertemporal substitution
- Separation of the three dimensions in the spirit of Kreps-Porteus (1978) / Epstein-Zin (1989, 1991)
- Standard Welfare function:

$$W = \sum_{t=1}^{T} \sum_{r=1}^{R} P_{rt} U(c_{rt}) (1+\rho)^{-t}$$

Disentangling:

$$W^{R} = \sum_{t=1}^{T} V\left[P_{t} U^{-1}\left(\sum_{r=1}^{R} \frac{P_{rt}}{P_{t}} U(c_{rt})\right)\right] (1+\rho)^{-t}$$

 Isoelastic specification to disentangle inequality aversion across space(γ) and time(η)

Disentangling both concepts

$$S^{R} = \sum_{t=1}^{T} \sum_{r=1}^{R} P_{rt} \underbrace{\left(\frac{c_{rt}/c_{t}^{ede}}{c_{r0}/c_{0}^{ede}}\right)^{\eta-\gamma}}_{\Omega_{rt}} \underbrace{\frac{c_{r0}^{-\gamma}}{c_{x0}^{-\gamma}}}_{EW} \underbrace{\frac{c_{r1}^{-\eta}}{c_{r0}^{-\eta}}(1+\rho)^{-t}}_{DF_{rt}} d_{rt}$$

Standard discount factor and equity weights as before for $\eta=\gamma$

• If $\gamma \neq \eta$:

- If $\gamma < \eta$: $\Omega_{rt} > 1$ for regions that are relatively richer in the future
- If $\gamma > \eta$: $\Omega_{rt} > 1$ for relatively poorer regions at $t \implies$ equity weighting becomes more important

As $\gamma \rightarrow 0$, normalization disappears, implying a unique carbon price

Inequality between countries

- Spatial resolution of IAMs very broad (RICE: 13, PAGE: 8, FUND: 16)
- (downward?) biased estimate of the optimal Social Cost of Carbon
- Geographical distribution should be taken into account of
 - income (Stern (2006), Anthoff et al. (2009), , UNDP (2010))
 - **impacts** (Kverndokk and Rose (2008), Mendelsohn (1994, 2011)
- Disaggregate region r by assuming a distribution of consumption: $c_{rt} \sim F_{rt}$

Inequality between countries

Measure inequality using Atkinson class of inequality indices

$$I_{rt}(\gamma) = 1 - rac{c_{rt}^{ede}}{c_{rt}}$$
 where $c_{rt}^{ede} = \left(\int c^{1-\gamma} dF_{rt}\right)^{rac{1}{1-\gamma}}$

- c_{rt}^{ede} : equally-distributed equivalent consumption
- Consistent with using a Utilitarian SWF with isoelastic utility function
- Analytical solutions: Taylor Approx. or lognormal income distribution (Atkinson and Brandolini, 2010)

Equal distribution of impacts

SCC formula: Only equity weights are changed

$$\frac{c_{rt}^{-\gamma}}{c_{x0}^{-\gamma}} \Longrightarrow \frac{c_{rt}^{-\gamma}}{c_{x0}^{-\gamma}} (1 - I_{rt}(\gamma))^{-(\gamma+1)}$$

- Role of Prudence $(RP=\gamma+1)$ or "downside inequality aversion"
- For negative impacts, higher inequality implies unambiguously a higher SCC $\left(\frac{\partial S^{RC}}{\partial I_{rt}} > 0\right)$
- So far: impacts are assumed to be equally distributed between countries (on per-capita basis)

Un-equal distribution of impacts

Impacts modeled as damage function: $d_{rt} = D(c_{rt})$, e.g., $D(c_{rt}) \propto c_{rt}^{\alpha}$

can be combined to finally yield for the SCC

$$S^{RCD} = \sum_{t=1}^{T} \sum_{r=1}^{R} P_{rt} \left(\frac{c_t^{ede}}{c_0^{ede}} \right)^{\gamma - \eta} \frac{c_{rt}^{-\gamma}}{c_{\chi_0}^{-\gamma}} \underbrace{\left(1 - I(\gamma)_{rt} \right)^{-\frac{(\gamma - \alpha)((\gamma - \alpha) + 1)}{\gamma}}}_{\Delta_{rt}} (1 + \rho)^{-t} d_{rt}$$

• equivalent to adjusting damages d_{rt} by the factor Δ_{rt}

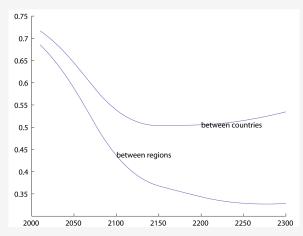
Depending on inequality aversion and the impact elasticity α:

• $\alpha = 0$: $\Delta_{rt} < 1$ (as before: overall lower weights of impacts, i.e., lower SCC)

•
$$\alpha \varepsilon [\gamma, \gamma + 1]$$
: $\Delta_{rt} < 1$ (most realistic case)

• $\gamma = 1$ and $\alpha = 1$: $\Delta_{rt} = 1$ (within-region inequality does not matter)

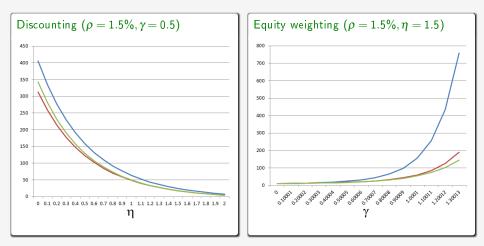
Values for η and γ


- From survey data/experiments: large variability Atkinson et al., 2009: $\eta \sim 9$, $\gamma \sim 2-3$ (and $RRA \sim 3-5$)
- Climate change literature: typically $\eta = 1-2$, recent tencendy towards $\eta = 1.5$
- From revealed social preferences (income tax schedule, ODA):

•
$$\gamma \sim 1.4$$
 (Evans 2005)
• $\gamma = 0.5 - 1.5$ (Clarkson and Deyes, 2002)
• $\gamma = 0.25 - 0.75$ (U.S. Bureau, 2006)
• $\gamma \sim 0.7$ (Tol 2010)

- A lower value for γ than for η and RRA seems a robust finding
- Elasticity of impacts (α) between 0.9 and 1.3, mean very close to one (Anthoff and Tol, 2011)

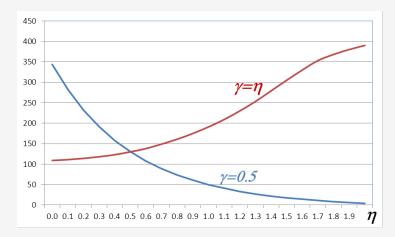
Income inequality predictions


- Convergence mainly between world regions
- Forecasting increasing inequality within regions based on historical variance of log income (σ²)

FUND model

- IAM focussing on impacts and evaluation of climate change
- rather complex damage module (energy, weather related events, health, biodiversity, migration)
- 16 regions
- GDP and Population scenario based on EMF14 Stand. Scen.
- SCC as optimal carbon tax/permit price
- Optimal Policy and Welfare optimization ⇒future work!

Results



regional weights disaggregated non-constant damages

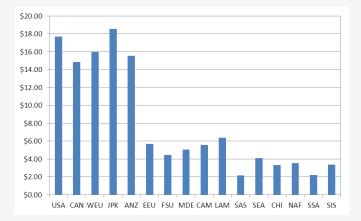
Inequalities and the SCC | Numerical results

Results

Standard SCC vs. disentangled discount rate and equity weights

Results

• Using the FUND model to compute the Social Cost of Carbon in /tC ($\eta = 1.5, \rho = 1.5\%$):


type of equity weights	$\gamma = 1.5$	$\gamma = 0.5$
no equity weighting $(\gamma\!=\!0)$	10.2\$	10.2\$
regional equity weights	304.7\$	17.7\$
individual equity weights	2479\$	24.5\$
constant relative impacts $(lpha=1)$	458.1\$	17.8\$

- Standard regional equity weights imply a higher SCC
- Considering inequality within regions, the SCC increases; non-constant impacts reduce the effect
- Effect of equity weighting is significantly lower if the discount rate is left unchanged

Inequalities and the SCC | Numerical results

Results

• Equity weighted SCC estimates according to region $(\rho = 1.5\%, \eta = 1.5, \gamma = 0.5, \alpha = 1)$

Conclusion

- The welfare specification has a dramatic impact on the optimal climate policy
- Social preferences in different dimensions typically do not coincide, in particular $\gamma < \eta$
- Equity weightys increase the SCC, but the effect is reduced if disentangled from the discount rate, and thus lower than previous estimates
- The spatial resolution of models matters and finer resolution seems to increase the SCC

Inequalities and the SCC | Conclusion

Conclusion

Thank you!

Johannes Emmerling | FEEM | FEEM/IEFE Seminar, Sept 6th, 2012