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Abstract

We model the role of the world’s forests as a major carbon sink and
consider the impact that forest depletion has on the accumulation of CO2

in the atmosphere. Two types of agents are considered: Forest owners
who exploit the forest and draw economic revenues in the form of timber
and agricultural use of deforested land; and non-forest owners who pollute
and suffer the negative externality of having a decreasing forest stock. We
retrieve the cooperative solution for this game and show in which cases
cooperation allows to partly reduce the negative externality. We analyze
when it is jointly profitable to abate emissions, when it is profitable to
reduce net deforestation, and when it is optimal to do both things (abate
and reduce net deforestation).

Key Words: Game theory, dynamic games, optimal control, deforesta-
tion, forest management, emissions, renewable resources.

1 Introduction

World forests cover nearly one third of planet Earth’s surface. However, total
world forest area is decreasing at an alarming rate. Every year an area equivalent
to the size of Costa Rica is deforested (FAO, 2010). World deforestation has
become an issue of great international environmental concern for a number
of reasons: First, world forests have great ecological value as carbon sinks.
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The third author’s research is supported by NSERC, Canada.
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Second, forests host much of the world’s biodiversity. Third, forests protect
land and water resources and help prevent land erosion and desertification. In
this paper we concentrate mainly on the role of forests as carbon sinks, although
the framework used here could be extended to include the other two.

We view forests as a provider of somewhat competing economic and environ-
mental goods. While forest logging brings economic revenues from both timber
and agriculture on deforested land in the short run (FAO, 2006), excessive log-
ging can exacerbate the problem of greenhouse gases (GHGs) accumulation in
the long run. We have built a model where we account for the accumulation of
GHGs in the atmosphere and propose a GHG accumulation dynamics in terms of
both anthropogenic emissions and carbon sequestration by the world’s forests.
The framework used allows to (i) evaluate the impact that forest depletion
has on atmospheric GHG accumulation through the so called reduced-carbon-
sequestration effect ; and (ii) compare short-term rewards from high emissions
and intensive deforestation policies with its long-term costs due to excessive
GHG accumulation and forest depletion.

There exist many papers that deal with the role of excessive GHG accumu-
lation in the atmosphere within a dynamic setting (see, e.g., the early papers
by Van der Ploeg and De Zeeuw (1992), Long (1992), Dockner and Long (1993)
and the literature review by Jørgensen et al. (2010)). In this literature, emis-
sions are a control variable and the issue is to determine the optimal emissions
rate so as to reduce the environmental damage coming from the excessive ac-
cumulation of GHGs. Typically, these models concentrate on the difficulty to
coordinate on the optimal level of emissions, while treating carbon sequestration
as exogenously given.

In this paper, we extend the literature and explicitly account for endogenous
carbon sequestration by modelling the role of forests as a carbon sink. Forests
are considered as a renewable resource whose evolution has an impact on the
accumulation of GHGs in the atmosphere.

There exist a number of papers in the literature that deal with the issue of
forest depletion using a dynamic-game approach (e.g., Van Soest and Lensink
(2000), Fredj et al. (2004), Fredj et al. (2006), Mart́ın-Herrán and Tidball
(2005) and Mart́ın-Herrán et al. (2006)). In these articles, the players are
forest owners who exploit the forest to obtain economic revenues, and a donor
community, or an environmentally-aware player, that is willing to compensate
forest owners who engage in preservation efforts of the resource.

We have merged these two strands of the literature. We have built a dynamic
optimization problem where two economic agents interact. On the one hand
forest owners exploit (and eventually deplete) the forest. Their actions have an
environmental impact on the atmospheric accumulation of GHGs. On the other
hand non-forest owners who derive utility from production (i.e., emissions) and
disutility from the accumulation of GHGs in the atmosphere. In this setting, it
is this disutility that they experience that, in some cases, may turn them into
donors who seek for forest conservation.

In our model, forest owners have an incentive to deforest since deforestation
increases their economic revenues. Conversely, non-forest owners have an inter-
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est to preserve forests for their value as a carbon sink. This modelling framework
allows to capture both the high opportunity cost to reduce deforestation and
the negative economic externality that forest owners inflict on non-forest owners
as a consequence of their deforestation policy. Unlike the other papers afore-
mentioned we do not focus solely on forest conservation but also on its impact
on GHG accumulation. Non-forest owners are to decide what is their optimal
level of emissions. The parameters of the model have been calibrated to fit
real data. The jointly optimal outcomes are compared with non-cooperative or
business-as-usual policies. We show that cooperation allows to partly reduce
the negative externality and analyze when it is profitable to abate emissions,
when it is profitable to reduce net deforestation; and when it is optimal to do
both things (abate and reduce net deforestation).

The remainder of the paper is organized as follows: in Section 2, we present
the model and the economic problem for the two types of agents. In Section 3,
we characterize analytically the non-cooperative optimal policies for each player.
In Section 4, we compute the cooperative optimal policies, and compare them
to their non-cooperative counterparts. We also perform a sensitivity analysis.
Our results are summarized in Section 5.

2 The model

We consider two types of agents: forest owners and non-forest owners. Forest
owners are modeled as environmentally unconcerned agents who only care about
the forest revenues obtained with deforestation. We suppose forest owners to
neglect the environmental impacts of their actions, i.e., they do not consider
the consequences that their deforestation policy brings out in terms of GHG
accumulation. On the other hand, non-forest owners get revenues from the pro-
duction of economic goods. Their productive activity generates emissions and
non-forest owners do take into account the negative effects of current emissions
policies on the accumulation of GHGs in the atmosphere. This way of mod-
elling allows to capture the negative externality that forest owners create on
non-forest owners through the so called reduced-carbon-sequestration effect.

We present the objectives of the two players. In what follows we use subscript
FO to denote forest owners and subscript NF to denote non-forest owners.

2.1 The problem of forest owners

Forest owners maximize their discounted stream of net revenues. Forest revenues
depend on their afforestation and deforestation rates A(t) and D(t), respectively,
as well as on the existing forest area F (t) measured in hectares. Net revenues are
discounted at rate r

FO
throughout a fixed and finite time horizon, given by time

T . The rate r
FO

can be viewed as an intertemporal rate of substitution. Net
revenues include gross revenues R(t), afforestation costs κ1A(t) and deforesta-
tion costs κ2D(t), where κ1 and κ2 are respectively the per-hectare afforestation
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and deforestation costs. The objective of forest owners is the following:

max
A(t),D(t)

∫ T

0

e−rFO
t [R(t)− κ1A(t)− κ2D(t)] dt, (1)

where A(t) ∈ [0, Amax] and D(t) ∈ [0, Dmax]. The upper bounds for afforestation
(Amax) and deforestation (Dmax), reflect the idea that there is a physical limit
in the short term to afforestation and that deforestation is subject to some
regulation that allows for it within some limits. The value ofDmax is set to fit the
observed deforestation world figures provided by FAO (2006). The definitions
of all parameters, their values and their sources are provided in Appendix A.

We assume that the evolution over time of the forest area can be well ap-
proximated by the following linear-differential equation:

Ḟ (t) = A(t) + ηF (t)−D(t), F (0) = F0, (2)

where η is a positive parameter, and F0 is the initial world’s forest area in 2005
(FAO, 2006) and equals nearly four billion hectares. Equation (2) is an extension
of Van Soest and Lensink (2000) and Fredj et al. (2006), where A = η = 0 in
the first and A = 0 in the second. The specification used in (2) is linear for
simplicity and approximates reasonably well forest expansion within a large
interval around current world forest area F (0). The linear form of the dynamics
will enable us to obtain analytical solutions.

Forest owners obtain revenues from selling timber and agriculture products.
Denote by q(t) the quantity of timber put on the market at time t, and let the
price p(t) be given by the following linear-inverse demand:

p(t) = p− θq(t), (3)

where p is the choke price that makes demand equal to zero, and θ is the
average price elasticity of demand. The values of parameters p and θ have been
calibrated using data given by FAO on timber prices and quantities.

The quantity q(t) comes from two different sources, namely, clear felling and
selective logging, and is given by

q(t) = nD(t) + nγδF (t), (4)

where nD(t) is the amount of wood retrieved from clear-felling an area D(t)
and the product nγδF (t) stands for total selective-logging yield which is lower
(in per-hectare terms) than the one obtained through clear felling. Parameter
n denotes the per-hectare timber yield and is typically measured in stems per
hectare or cubic meters of timber per hectare. FAO (2006) provides an esti-
mate for this parameter. Clear felling an area D(t) reduces total forest size by
the same amount. However, unlike deforestation, selective logging is assumed
here to have no impact on total forest land. “[Selective logging]...is not nec-
essarily destructive and can be done with low impact on the remaining forests,
if the proper techniques are applied”.1 Clearly, for selective logging to have a

1Source: http://www.fao.org/forestry/news/48681/en/
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negligible environmental impact, its per hectare yield per unit of area must be
much lower with respect to clear felling. This lower yield is accounted for by
parameter γ (γ << 1). Finally, according to FAO (2006), roughly one third of
the world’s forests are used primarily for the production of wood and non-wood
forest products. Parameter δ takes into account the fact that only a fraction of
the world’s forests are actually being exploited.2

Agriculture revenues are equal to prices times yields of the different crops
grown. For simplicity, we suppose that forest owners grow a single agricultural
good that we model as a composite good made of four representative crops
that are commonly related to deforestation processes. This good is sold in
international markets at a given price pA.3 The total yield at time t depends on
the size of available (deforested) land, given by F̄ −F (t), where F̄ stands for the
maximum size or carrying capacity of the forest, and on the soil productivity
x(t). As in Andrés-Domenech et al. (2011) -see also Van Soest and Lensink
(2000) for a simpler version- we model x(t) as follows:

x(t) = x+ α(t)D(t)− β F̄ − F (t)

F̄
. (5)

The above expression of total productivity of land x(t) is the sum of three terms.
The first one is a constant productivity term x that measures the average yield
in tons of crop per hectare of land of a representative agricultural good. The sec-
ond term, α(t)D(t), captures the idea that newly deforested land D(t) is more
productive. Variable α(t) measures the increase in total average per-hectare

production resulting from deforesting an area D(t). The third term, −β F̄−F (t)
F̄

,
accounts for the positive externality that forests generate on nearby agricultural
land. Forests are seen as a source of rain and a protective element to agricul-
tural land. Parameter β measures the decrease (increase) in soil quality, and
therefore in agricultural productivity, caused by forest depletion (expansion).
The productivity increase of newly deforested land is given by:

α(t) =
ψx

F̄ − F (t)
. (6)

Newly deforested land is more productive and parameter ψ measures the factor
by which productivity is increased. However, this extra productivity needs to be
normalised among all agricultural land. We divide the extra yield, ψx, by total
agricultural surface area, F̄ −F (t), otherwise the term α(t)D(t) in equation (5)
would overestimate the real impact that deforesting an area D(t) has.4 Note

2The equation that we have used for q is a small variation of the one presented by Van
Soest and Lensink (2000). In their case γ and δ are assumed equal to one. We follow here the
more comprehensive specification used by Andrés-Domenech et al. (2011).

3The price pA is constant, unlike p(t), due to the fact that agricultural production in
deforested land represents only fraction of world total agricultural land.

4Agricultural revenues are obtained by multiplying productivity (5) by total agricultural
land. Hence, equation (5) has to account for average per-hectare productivity measured in
tons of crop per hectare. For this reason, the term α(t)D(t) cannot be understood as the extra
productivity of newly deforested land, but rather as the normalised productivity increase that
newly deforested land has on total agricultural land.
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that Van Soest and Lensink (2000) assume a constant productivity increase,
i.e., α(t) ≡ α.

Putting together revenues from timber sales and agricultural products, we
get the following expression for gross revenue:

R(t) = p(t)q(t) + pAx(t)
(
F̄ − F (t)

)
. (7)

To recapitulate, forest owners maximize their net discounted economic rev-
enues with respect to their deforestation and afforestation efforts D(t) and A(t),
respectively (problem (1)), subject to the forest dynamics in (2).

2.2 The problem of non-forest owners

The economic problem of non-forest owners is quite different. Non-forest owners
optimize a two-part objective function. The first part consists of a short-run
gain that non-forest owners derive from producing and consuming economic
goods. The production of these goods generates pollution as a by product and
this pollution affects their utility. For simplicity, we have supposed here that the
carbon intensity of the economy is constant. Hence, ceteris paribus, producing
more goods is equivalent to emitting more.5 Denote by E(t) the GHGs emissions
by non-forest owners; and by the concave increasing function G(E) the payoff
generated in terms of goods production. We adopt the following functional
form:

G(E(t)) = aE(t)− 1

2
bE2(t), (8)

where parameters a and b are positive and have been fixed in order to ensure
that G′(E) > 0 for the relevant range of emissions. This specification is similar
to the one proposed in, e.g., Dockner and Long (1993) and Breton et al. (2005)
with the only difference that we have included parameter b to calibrate G(E(t))
at current GDP at the world level.

The second term in the objective of non-forest owners represents an eco-
nomic loss or damage related to the accumulation of emissions in the atmo-
sphere. Denote by S(t) the instantaneous stock of GHGs (e.g., stock of CO2)
in the atmosphere at a given time t. According to the IPCC (2007) increases in
the atmospheric concentration of GHGs result in sea water level rising, temper-
atures increasing and sea water acidification. These processes are all related to
economic and environmental damages. We assume that the damage cost is given
by a convex increasing function L (S), with L′′(S) > 0. Although we acknowl-
edge the existence of thresholds, extreme events and jumps in the damages,6

our formulation, which is very common in the literature (see, e.g., Benchekroun

5One could think of a more refined formulation where the carbon intensity of the economy
can adjust and production increases can be compatible with constant levels of emissions or
even with emission decreases.

6For instance, a small increase in the atmospheric concentration of GHGs can bring a
quantitatively different damage, and large increases may trigger qualitatively different dam-
ages (e.g., massive ice cap melting, dissolution of coral reefs as a result of extreme oceanic
acidification, etc).
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and Long, 2002; Dockner and Long, 1993; Van der Ploeg and De Zeeuw, 1992;
Breton et al., 2006), smooths the impacts of such phenomena rather than deal-
ing with them explicitly. Needless to say, accounting properly for non linearities
and threshold effects in the damage cost would lead to a model of much greater
complexity.

This being said, for a specific function to qualify as a good candidate to model
such damages we can think of yet another necessary requirement: Greenhouse
gases, and most particularly CO2, have always been present in the atmosphere
and represent a basic element to the existence and development of life (e.g.,
plants). It is clear that more than the existence it is the excessive accumu-
lation of atmospheric GHGs that poses the problem. We adopt the following
specification of L(S) that captures in a simple way all these elements:

L(S(t)) = c(S(t)− S)2, (9)

where S is a natural threshold, beyond which economic and environmental dam-
ages are considered to be excessive. In practical terms, choosing a reasonable
value for S -given the specification above- amounts to choosing a level of atmo-
spheric GHGs for which there is no perceived damage. We identify S with the
pre-industrial level of GHGs (see, e.g., Bahn et al. (2008)).

Taking into account the gain function G(E) and the damage function L(S),
we obtain the objective functional that non-forest owners maximize:∫ T

0

e−rNF
t [G(E(t))− L(S(t))] dt− φ (S(T )) e−rNF

T , (10)

where r
NF

is the intertemporal rate of substitution, and φ(S(T )) is a salvage
value. Note that for the sake of generality, we do not require that both players
discount their stream of payoffs at the same rate, i.e., r

NF
need not be equal to

r
FO

.
Non-forest owners are modelled as forward looking agents who consider the

long-term impact of their decisions. The stock of emissions accumulates slowly
and then has a long-term impact on non-forest owners’ payoffs. Therefore, it is
sensible to have a scrap value function somehow related to the stock of emissions
at the terminal date of the planning horizon. Such scrap value function can be
generically written as φ(S(T )). It is reasonable to think that whatever the GHG
stock at the terminal date, it will strongly impact future payoffs due to the long-
term persistence of greenhouse gases in the atmosphere. One could think of a
more sophisticated scrap value function that also depends on the final forest
stock or on the emissions policy followed after the terminal date. Or even define
the scrap value function as an identical problem to the one presented above in
equation (10). Because we want to keep the problem as simple as possible, and
because we want to be able to say something that is irrespective of what policies
are chosen after the terminal date, we have chosen a formulation for φ(S(T ))
that depends on the terminal stock of greenhouse gases alone:

φ (S(T )) =

∫ 2T

T

e−rNF
(s−T ) L(S(T )) ds. (11)
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Although the salvage function in (11) is simple, it satisfies the following
intuitive requirements: (i) It reflects the idea that the terminal stock of GHGs
matters and has an impact on future payoffs; (ii) it is easy to compute and does
not depend on (potentially) unknown future policies; (iii) it keeps discounting
in a natural way the cost of future environmental damages; and (iv) the time
span considered for the scrap value function is related to the planning horizon.
In fact, if the planning horizon chosen is short, then the weight given for future
environmental damages will likely be small as well and vice versa.

Non-forest owners maximize their payoffs in (10) by adjusting their emis-
sions, and their decision has an impact on the state of the system. Emissions,
in our model, are supposed exclusively anthropogenic and are given entirely by
non-forest owners’ emissions. By this we do not mean that forest owners do not
emit but rather that their contribution to global emissions is negligible. The
dynamics of the emissions rate E(t) is then given by:

Ė(t) = V (t)E(t), E(t) ≥ 0, E(0) = E0. (12)

The dynamics of emissions in equation (12) can also be written in a more familiar
way:

Ė(t)

E(t)
= V (t),

where V (t) denotes the instantaneous speed of variation of emissions. For the
sake of realism V (t) has been modelled as a bounded control variable (i.e.,
Vmin ≤ V (t) ≤ Vmax), with Vmin < 0 and Vmax > 0. In the literature, it is
more common to see emissions as a flow variable. As in Andrés-Domenech et al.
(2011), we treat emissions as a stock and the speed of variation of emissions as
a bounded control variable. This way of modelling allows to better account for
the inertia of the productive and economic system. Indeed, emissions take time
to adjust and the upper and lower bounds on V (t) simply reflect this idea that
emissions cannot be increased or decreased at whatever rate. One can think
of these bounds as being given by the existence of technical, economic and/or
political constraints.

The evolution of the stock of greenhouse gases in the atmosphere depends on
emissions and carbon sequestration by world forests and oceans. World forests
sequester carbon as they grow and according to IPCC (2000) and FAO (2006)
approximately half of the dry weight of forest biomass is carbon. To model
carbon sequestration by forests one could measure the variation of total forest
biomass. However, this would present two main difficulties. First, the varia-
tion in total carbon biomass is difficult to measure. And second, measuring
carbon sequestration through the variation in forest biomass underestimates to-
tal carbon sequestration since timber captures are neglected. To overcome this
problem, we have made the simplifying assumption that forest owners manage
a representative forest whose trees grow -volume wise- at an average and con-
stant rate. Having a representative forest whose growth rate is constant allows
expressing carbon sequestration as a linear function of forest area alone (i.e.,

8



carbon sequestered per hectare of forest land and per unit of time). The ad-
vantage of having carbon sequestration in terms of forest area -rather than in
terms of biomass variation- is that one can easily consider timber captures, while
gaining a tractable and understandable way to measure carbon sequestration.

Further, note that by measuring carbon sequestration as a function of forests’
surface area, one can account for the so called reduced-carbon sequestration effect
that is based on the simple principle that a tree that is cut cannot grow (i.e.,
cannot sequester carbon). Thus, it is straightforward to see that deforestation
has a negative impact on carbon sequestration due to the reduction in forest area
that it induces. Expression (13) below captures the dynamics of the atmospheric
concentration of carbon in terms of the forest stock, where parameter ϕ reflects
the amount of carbon sequestered per hectare of forest and per unit of time.

We have considered a second carbon sink, the oceans. Denote by W the
amount of carbon that they sequestrate. The carbon uptake by the oceans has
remained relatively stable during the last few years, for this reason W has been
assumed constant for simplicity even if there exist small year-to-year variations
due to el Niño effects (Le Quéré et al. (2009)). The evolution of the stock of
pollution is, then, given by the following differential equation:

Ṡ(t) = E(t)− ϕF (t)−W, S (t) ≥ 0, S(0) = S0. (13)

To wrap up, non-forest owners maximize their payoff in (10) adjusting the
instantaneous variation of emissions V (t), subject to equations (12) and (13) and
given the fact that the solution to (2) is inherited from forest owners’ problem.

3 Individual optimization

In this section we characterize the optimal strategies of the two players when
they act independently. As forest owners’ payoffs do not depend on emissions
or GHG accumulation, their payoffs are independent of the action of non-forest
owners. On the other hand, non-forest owners’ payoffs are affected by for-
est owners’ actions through the evolution of the forest stock. In this setting,
where there is a one-way interaction, Nash and Stackelberg equilibria coincide.
Further, open-loop and feedback information structures yield the same result.
Given this, we can first solve the economic problem of forest owners, and next
optimize for non-forest owners taking the evolution in the forest stock as given.

3.1 Forest owners

Forest owners maximize their revenues in (1) subject to (2)-(7). The following
proposition provides the optimal solution to their control problem.

Proposition 1 For the parameter domain defined in Appendix A the optimal
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control, state and co-state variables are given by:7

A∗(t) = 0, D∗(t) = Dmax for all t ∈ [0, T ],

F (t) =

(
F0 −

Dmax

η

)
eηt +

Dmax

η
, (14)

λ(t) =
1

η − r
FO

[
1− e(η−r

FO
)(T−t)

] {
(2θnDmax − P )nγδ

+pA(x− 2β) + 2F (t)

[
θn2γ2δ2 + pAβ

1

F̄

]}
. (15)

Proof. See Appendix B.
The results show that forest-owners’ optimal strategy consists in deforest-

ing at maximum admissible level and not afforesting at all. As the problem
is linear in the afforestation effort, and afforestation is a pure cost in our set-
ting, then the optimal strategy is obviously to set A (t) at its lowest admis-
sible value, i.e., A(t) = 0. Further, the marginal revenue from agricultural
activity is positive for all admissible values of D (t), including Dmax. There-
fore, there is an incentive to deforest at maximum level. These results follow
from the fact that, for our parameter domain, we have λ(t) ≤ 0 , for all t. In-
deed: (i) the term 1

η−r
FO

[
1− e(η−r

FO
)(T−t)] is always negative since 1

η−r
FO

and[
1− e(η−r

FO
)(T−t)] are of opposite sign regardless of the value of η and r

FO
;

and (ii) (2θnDmax −P )nγδ+ pA(x− 2β) > 0, for all admissible values of D (t),
including Dmax. Deforestation is mainly driven by the revenues obtained from
growing agricultural products on deforested land, rather than by the timber
revenues that arise from deforestation itself. This is in line with other stud-
ies, e.g., Barbier and Rauscher (1994), Barbier and Burgess (2001) and FAO
(2006), which suggested that deforestation for agricultural purposes is the main
explanatory factor of forest depletion worldwide.

3.2 Non-forest owners

Non-forest owners maximize their payoff given by (10) and take into account
the values of the three state variables, namely forest area, F , emissions, E, and
the stock of accumulated emissions in the atmosphere, S. The optimal solution
depends on the length of the planning horizon and on the intertemporal discount
rate. For the values of our parameters, the solution is constant (V ∗ = Vmax)
as long as the planning horizon (T ) is less than approximately forty years,
(i.e., T . 40).8 The following proposition provides the optimal solution to the
problem of non-forest owners and the optimal time paths for control and state
variables in such case.

7The second-order sufficient optimality conditions are satisfied for this and all the problems
studied in this paper.

8The determination of the exact planning horizon beyond which Proposition 2 does not
hold depends on the intertemporal discount rate. As we will see for every value of the discount
rate we can obtain the maximum value of T for which Proposition 2 holds.
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Proposition 2 For the parameter domain defined in Appendix A and T . 40,
the optimal control and state variables are given by:

V (t) = V ∗ = Vmax for all t ∈ [0, T ],

E(t) = E0e
V ∗t, (16)

S(t) = S0 −
ϕ

η
tDmax −

E0

V ∗
(1− eV

∗t) +
ϕ

η

(
F0 −

Dmax

η

)
(1− eηt). (17)

Proof. See Appendix C.
As pointed out above, the optimal control V ∗ depends on the planning hori-

zon considered. For a relatively short horizon, i.e., T . 40, the optimal solution
is constant of the type V ∗ = Vmax all along. The solutions showed in Proposi-
tion 2 hold for as long as there is no switching time. For longer horizons, i.e.,
T & 40, the optimal solution is to apply the control V = Vmax for some time
and then switch to a cleaner regime. For much longer horizons (i.e., T > 100),
it is possible that the optimal solution consists of switching not once but several
times. In all cases, the different switching times and the number of switches
depend on the adopted value for T . Denote by t̃V the optimal switching time.
Then the optimal solution for 40 . T ≤ 100 can be summarized as follows:

V (t) =

{
Vmax, for t ≤ t̃V
Vmin, for t > t̃V .

In Appendix D we have solved the problem for the case where there is only one
switching time, and characterized the first-order conditions that apply in that
case. Retrieving the actual switching time, however, represents a challenge. This
is mainly due to the change in the evolution of the state and co-state variables as
a consequence of changes in the switching time itself. The first-order conditions
before and after the switch will only be satisfied if the exact switching time is
chosen. This poses a problem in determining the actual switching time since
one has to try with infinitely many possibilities and the first-order conditions
will only be satisfied if the exact one is chosen.

To overcome this problem we have developed an algorithm to obtain the
optimal switching time that is approximated to the integer time at which it is
best to switch. The algorithm proposed consists on evaluating the sum of payoffs
for all the possible scenarios (i.e., all the possible switching times). Among them,
we then select the integer time for which shifting regime (from Vmax to Vmin)
yields greater payoffs. A sketch of the algorithm can be found in Table 1.

Suppose for instance that our planning horizon and discount rate were fixed
at, e.g., T = 50, r

NF
= 0.02. Figure 1 gives the payoffs of non-forest owners

in the y-axis for each possible switching time (x-axis). We observe, for this
particular case, that switching from Vmax to Vmin after t̃V (where t̃V = 17
years) is the best thing to do.

We can generalize the algorithm presented in Table 1 and let the planning
horizon T vary while keeping the discount rate r

NF
constant. So doing we obtain

the best switching time for each different planning horizon.
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Table 1: Sketch of algorithm used to compute the optimal switching time t̃v

Fix the length of the planning horizon (T ) and the discount rate (rNF )
for all possible integer switching times (tv) do

Payoff(tv) = Discounted sum of payoffs before switch tv
+ Discounted sum of payoffs after switch tv
+ Scrap value function

end
Select the tv whose Payoff is greater

Figure 1: Payoffs as a function of the switching time

Figure 2 gives the optimal switching time for each possible planning horizon
T . To better understand this figure it is important to distinguish the difference
between three concepts. First, parameter T denotes the planning horizon of the
problem. Second, the value T s denotes the threshold planning horizon, that
is, the minimum planning horizon beyond which there is a switch. And finally,
since the switching time does not coincide with T s; the value t̃V denotes the
time in which the switch actually occurs.

The 45-degree diagonal indicates that no switch is applicable. The shortest
planning horizon for which there is a switch - T s- is the first element of the curve
off the diagonal. Figure 2 illustrates the fact that it pays to emit more in the
short run. It also shows that for longer planning horizons it is comparatively
less attractive to apply Vmax. This result is related to the existence of the non-
linear damage function L(S), by which the environmental damage increases
when GHGs accumulate due to excessive emissions.

In Figure 2, T s = 38. This means that there is no switch if the planning
horizon is short (i.e., less than 38 years). Conversely, there is a switch if T ≥ T s.
As mentioned before, T s and t̃V do not coincide, not even when T = T s. Put

12



Figure 2: Optimal switching time for every planning horizon

differently, if the planning horizon is long enough non-forest owners recognize
the need to switch to a cleaner regime, but the switch will take place some
time before the terminal date. Note that the pair

(
T = 50, t̃V = 17

)
that we

previously obtained in Figure 1 is now just one point of the curve displayed in
Figure 2.

We can further generalize our algorithm for any value of r
NF

. In the previous
two figures, r

NF
was set equal to 0.02 (2%). The previous results are compared

with two other alternative scenarios r
NF

= 1% and r
NF

= 3% in Figure 3.

Figure 3: Impact of the discount rate on the switching time
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From Figure 3 one can obtain a double message: First, when the discount
rate is lower, non-forest owners internalize earlier the negative externality com-
ing from the accumulation of GHGs in the atmosphere. This can be inferred
from the fact that T s is lower for lower discount rates. In particular we have
that T s = 35 if r = 1%; T s = 38 if r = 2%; and T s = 41 if r = 3%. Second,
the longer the time horizon used, the earlier the switch, i.e., the three curves
are downward slopped.

To summarize, it is optimal for non-forest owners to increase emissions if
T . 40. If T & 40, it will be better to switch to a cleaner regime (V = Vmin) at
some time t̃V . The optimal time of the switch depends directly on the planning
horizon and the discount rate used. A simple folk conjecture says that the
longer the planning horizon and/or the smaller the intertemporal discount rate,
the sooner this switch will arrive. This is related to the existence of the damage
function L(S) that yields greater (cumulative) losses for lower discount rates
and longer planning horizons.

It has been showed how to determine the switching time. To put things
into perspective one can compare in Figure 4 the difference in payoffs between
the payoff with the optimal solution with switching time, π(V̂ ), versus the pay-
offs π(Vmax) and π(Vmin) obtained by applying the constant (and sub-optimal)
solutions: V = Vmax∀t ∈ [0, T ] and V = Vmin∀t ∈ [0, T ] respectively.

Figure 4: Comparing V̂ with Vmin and Vmax

The value of π(V̂ ) in Figure 4 is obtained by computing expression (10) for

r
NF

= 2% along the optimal path for E(t) and S(t). For T < 38, π(V̂ ) and

π(Vmax) coincide. If T ≥ 38 the curve π(V̂ ) is obtained by applying a switch.
So far we have analyzed the optimal emissions policy. It is also important

to analyse the sign of the shadow price of the forest stock, λF . This shadow
price is positive regardless of the time horizon and discount rate considered.
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The positive sign of the co-state λF is directly related to the ability that forests
have to sequester carbon. Since the increase in forest area is directly related to
the enhancement of carbon sequestration (see expression (13)); then, whatever
the value of F and S,9 increasing marginally the forest area implies marginal
reductions in S, meaning smaller environmental losses (see expression (9)). This
is a qualitative aspect.

At the same time, we have seen that the importance of reducing emissions
is directly related to the length of the planning horizon and inversely related to
the discount rate. Likewise, the marginal value that non-forest owners attach
to an additional hectare of forest is greater when the planning horizon is longer
and the discount rate is lower. This is a more quantitative aspect.

In short, unlike forest owners, non-forest owners are interested in increasing
total forest area and this is reflected by the sign of λF . If we compare the dif-
ferent way in which forest owners and non-forest owners evaluate an additional
hectare of forest, it is clear that there exists an environmental externality. As
we have seen, forests have at least two uses: (i) the provision of economic rev-
enues; and (ii) carbon sequestration. These uses are competing and somewhat
excluding. Forest owners create a negative externality on non-forest owners
with their net deforestation policy. Hence, the question is: Should this negative
externality be corrected?

Given the existing property rights over the forest, and the fact that forest
owners’ payoffs are a decreasing function of total forest area, reducing net de-
forestation is harmful for forest owners. Therefore, the answer to this question
depends on whether an additional unit of forest can generate an increase in the
payoff of non-forest owners, such that it more than compensates the reduction
in forest owners’ revenues when they apply a more environmentally friendly de-
forestation/afforestation policy. If that is the case, then it will be jointly optimal
to correct the externality, or at least part of it. In the next section we compute
joint payoffs to give an answer to the question raised above. We also compare
the cooperative scenario to the status-quo individual equilibrium results.

4 Cooperative solution

In the previous section we determined the non-cooperative (status-quo) strate-
gies for both forest owners and non-forest owners. We saw that forest owners
find it optimal to deforest as much as possible and to not afforest. On the other
hand, non-forest owners suffer a negative environmental externality coming from
the depletion of the forest via the reduced-carbon-sequestration effect that states
the simple idea that a tree that is cut cannot grow and thus cannot sequester
carbon. This has an impact in the concentration of GHGs in the atmosphere
and leads to payoff losses to non-forest owners.

A relevant question to address is whether cooperation can improve welfare.
The jointly optimal solution can be obtained by jointly optimizing the payoff
functionals of the two players. To obtain this solution we suppose that forest

9Clearly we are referring here to values of S above S.
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and non-forest owners adopt the same discount rate r. This assumption is made
to avoid giving implicitly different weights to players’ streams of payoffs. Note
that dealing with the general case of two different discount rates complicates
the computations, but does not cause any conceptual difficulty.

The joint-optimization problem is as follows:

max
0≤A(t)≤Amax,
0≤D(t)≤Dmax,
Vmin≤V (t)≤Vmax

∫ T

0

e−rt [R(F (t), D(t)) +G(E(t))− L(S(t))] dt− φ(S(T ))e−rT

s.t.: Ḟ (t) = A(t) + ηF (t)−D(t), F̄ ≥ F (t) ≥ 0, F (0) = F0,

Ė(t) = V (t)E(t), E(t) ≥ 0, E(0) = E0,

Ṡ(t) = E(t)− ϕF (t)−W, S(t) ≥ 0, S(0) = S0,

where A, D and V are the three control variables. The joint payoff is maximized
subject to the dynamics of the forest area, emissions, and stock of greenhouse
gases in the atmosphere.

The Hamiltonian of the cooperative problem is:

Hc (F,E, S,A,D, V, λcF , λ
c
S , λ

c
E) = R(F,D) +G(E)− L(S) + λcF [A+ ηF −D]

+ λcS [E − ϕF −W ] + λcEV E,

where λcF , λ
c
E , λ

c
S denote the co-state variables associated with the forest stock,

emissions and the stock of GHGs respectively. All the variables with a su-
perscript c refer to cooperation as opposed to the non-cooperative outcomes
retrieved before.

The Lagrangian of the cooperative problem can be written as:

Lc (F,E, S,A,D, V, λcF , λ
c
S , λ

c
E , w

c
1, w

c
2) = Hc (F,E, S,A,D, V, λcF , λ

c
S , λ

c
E)

+ wc1D + wc2 (Dmax −D) ,

where wc1(t) and wc2(t) are the Lagrangian multipliers associated with the de-
forestation rate.
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The first-order optimality conditions read:

max
0≤A≤Amax,
0≤D≤Dmax,
Vmin≤V≤Vmax

Lc (F,E, S,A,D, V, λcF , λ
c
E , λ

c
S , w

c
1, w

c
2) , (18)

Ḟ = A+ ηF −D, F̄ ≥ F ≥ 0, F (0) = F0, (19)

Ė = V E, E ≥ 0, E(0) = E0, V ∈ [Vmin, Vmax],

Ṡ = E − ϕF −W, S ≥ 0, S(0) = S0,

λ̇
c

F = rλcF −
∂Lc

∂F
, λcF (T ) = 0, (20)

λ̇
c

S = rλcS −
∂Lc

∂S
, λcS(T ) = −dφ(S(T ))

dS(T )
, (21)

λ̇
c

E = rλcE −
∂Lc

∂E
, λcE(T ) = 0, (22)

wc1 ≥ 0, wc1D = 0, D ≥ 0,

wc2 ≥ 0, wc2(Dmax −D) = 0, Dmax ≥ D.

The necessary condition for the maximization problem in (18) with respect
to the deforestation rate reads:

∂Lc

∂D
= 0; −2θn2 [γδF +D] + pn+ pAψZ̄ + w1 − w2 − κ2 − λcF = 0. (23)

Because the Lagrangian function is linear in the afforestation rate, A, and
∂Lc

∂A = −κ1 +λcF , the optimal afforestation rate is a bang-bang policy as follows:

A(t) =


0 if −κ1 + λcF (t) < 0,

Ã ∈ [0, Amax] if −κ1 + λcF (t) = 0,
Amax if −κ1 + λcF (t) > 0.

(24)

Just as before, λcF appears in the optimality conditions for A and D. The
only change with respect to the non-cooperative solution is that now λcF cap-
tures the negative valuation of an extra hectare of forest (forest owners) as
well as the positive effect that increasing forest area has on carbon sequestra-
tion (non-forest owners). Hence, now, λcF can take either positive or negative
values depending on which effect dominates. Furthermore, unlike in the non-
cooperative case where the sign of λcF was constant along the planning horizon
for both players; now, nothing prevents that the sign of λcF changes as time
evolves. Hence, it is possible that we have a switch in either the afforestation
rate, or the deforestation rate, or both throughout the planning horizon.

The differential equation (20) for the costate variable reads:

λ̇
c

F = (r−η)λcF +2θn2γδ(D+γδF )+2pAβ
F

F
+pA(x−2β)−pnγδ+ϕλcS ,

λcF (T ) = 0. (25)
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In order to obtain λcF we need to have an analytical expression for F that in
turn depends on both A and D (see (19)). When we were in the non-cooperative
setting it was possible to characterize analytically the solution to forest owners’
problem by supposing ex-ante that we were in the right case of figure, and
then verifying, ex-post, that our first order conditions were indeed satisfied (see
Appendix B for more details). This type of reasoning was possible because the
optimal afforestation and deforestation rates were constant. In the present case,
however, we can have a policy switch on A and/or D at any time. The value
of λcF is a function of the switching time on A and D. Thus, the first-order
conditions will be satisfied for all t ∈ [0, T ] only if the exact switching time for
both variables is chosen.

With respect to the speed of adjustment of emissions, V , the Lagrangian
function is linear and ∂Lc

∂V = λcEE. Thus, the optimal speed of adjustment of
emissions is a bang-bang policy as follows:

V (t) =


Vmin if λcE(t)E(t) < 0,

Ṽ ∈ [Vmin, Vmax] if λcE(t)E(t) = 0,
Vmax if λcE(t)E(t) > 0.

We need to know λcE to derive the optimal cooperative emissions strategy. Equa-
tions (21) and (22) can be written as:

λ̇
c

S = rλcS + 2c(S − S), λcS(T ) = 2cφ[S − S(T )], (26)

λ̇
c

E = (r − V )λcE − a+ bE − λcS , λcE(T ) = 0. (27)

From (27) we see that λcE is a function of λcS . And from (26) we have that S
is a function of F . Therefore, to obtain λcE we need to know the evolution of the
forest stock and the evolution of the forest stock depends on the afforestation
and deforestation policies applied. As it turns out, not only do we have a
potential switch of regime for all our three controls, but the switches themselves
are interdependent.

One can obtain the analytical expressions for the evolution of the state and
co-state variables for all the possible cases of figure (i.e., before and after the
switch). But just as it happened with non-forest owners’ problem, it is not
possible to derive the exact switching times analytically.

Denote now by tcA, t
c
D and tcV the switching time for our three control vari-

ables A, D and V respectively. We have evaluated the discounted intertemporal
sum of joint payoffs for all the possible combinations of integer switching times
(tcA, t

c
D, t

c
V ) using a similar algorithm as before. See Table 2 for a sketch of the

algorithm.
The only difference with respect to our previous algorithm is that now the

computational complexity is increased as a consequence of the multiplicity of
cases. Denote now by t̃cA, t̃

c
D, t̃

c
V the three integer switching times that yield

greater intertemporal payoffs. We have computed t̃cA, t̃
c
D, t̃

c
V for T = {N ∈

[1, 100]} and for r ∈ {0.01, 0.02, 0.03}. Again, the results are linked to the
length of the planning horizon and the discount rate used.
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Table 2: Sketch of the algorithm used to obtain t̃cρ, t̃
c
D, t̃cv

Fix the joint intertemporal discount rate r
for all integer planning horizons T ∈ [1, ..., 100]

for all possible integer switching times tcρ
for all possible integer switching times tcD

for all possible integer switching times tcv do

JointPayoff(tcρ, t
c
D, t

c
v, T ) = Discounted sum of revenues of FO

+ Discounted sum of payoffs of NFO
+ Scrap value function of NFO

end
end

end
end
Select the tcρ, t

c
D, tcv whose JointPayoff is greater for each value of T

Our results, call for the following comments: The solutions obtained can be
classed into four different groups that coincide with four regions of the parameter
space. We denote them by Z1 to Z4. The boundaries of regions Z1 − Z4 are
related to parameter T . We denote the limits to these regions by T1, T1 and T3.
Figure 5 is a schematic representation of the solution.

Figure 5: Cooperation timeline is a function of T

The results, that are summarized in Table 3, call for the following comments:
(i) If the planning horizon is short (i.e., T < T1) we are in region Z1 and the
cooperative solution coincides with the non-cooperative one (i.e., the cooperative
solution brings no gain). The label not applicable (N.A.) is used here to denote
that there is no switching time and that the solution coincides with the status
quo. (ii) If we are in region Z2 (i.e., T1 ≤ T < T2) then it is jointly optimal to
afforest at maximum rate for some time and then switch to afforestation Amin

some time before the end of the planning horizon. It is not optimal to afforest
all the time and we have that A∗ = Amax if t < t̃cA and A∗ = Amin if t ≥
t̃cA. We use the notation t̃cA = f(T ) to denote the fact that the switching time
depends on T . In fact f(T ) is an increasing function of T . Clearly, for larger
values of T it is optimal to switch later. The same reasoning applies for t̃cD. In
this case, though, we have that D∗ = Dmin if t < t̃cD and D∗ = Dmax if t ≥
t̃cD. (iii) If we are in region Z3 (i.e., T2 ≤ T < T3) then it is optimal to apply
A∗ = Amax and D∗ = Dmin all along. We have used the notation t̃cA = t̃D = T
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to differentiate it from label N.A. Recall that label N.A. was used to denote
that there is no switch and the optimal policy is identical to the status quo one
(i.e., A∗ = Amin and D∗ = Dmax ∀t ∈ [0, T ]) whereas in region Z3 we have that
there is no switch either, but the optimal policy is to apply A∗ = Amax and
D∗ = Dmin throughout. (iv) Finally, region Z4 is identical to region Z3 except
for the emissions policy. If T ≥ T3 then it is certain that we will have a jump
from Vmax to Vmin at some point in time t̃cV . The time of the switch is also a
function of T .

Table 3: Jointly optimal policies are a function of T

Switch Z1 Z2 Z3 Z4

t̃A N.A. t̃A = f(T ) T T
t̃D N.A. t̃D = g(T ) T T
t̃V N.A. N.A. N.A. t̃V = h(T )

Cooperation is more intense and the solution is more environmentally friendly
as we move from region Z1 (no cooperation) to region Z4 (full cooperation and
emissions abatement). When the discount rate is smaller, the environmental
damage is further internalized. Table 4 shows the values of T1 to T3 for our dif-
ferent values in the discount rates. It is not surprising that when the discount
rates are smaller the threshold planning horizons (T1, T2, T3) between regions
Z1, Z2, Z3 and Z4 are shifted downwards (See Table 4).

Table 4: Threshold times are a function of the discount rate

Discount T1 T2 T3

r = 1% 11 19 36
r = 2% 12 20 38
r = 3% 12 21 41

4.1 Cooperation brings asymmetric results

We have showed that joint payoffs are greater in the cooperative setting pro-
vided that T ≥ T1. This is due to the damage reduction generated by increased
afforestation effort and lower deforestation rates. Cooperation, however, does
not bring gains to both players. Non-forest owners gain from the lower envi-
ronmental damage, while forest owners lose by applying forest policies that are
environmentally friendly but revenue harming.

Denote by πcNF (xc) the discounted sum of payoffs that non-forest owners get
in the cooperative setting, where xc denotes the state of the system along the
cooperative trajectory. Analogously πncNF (xnc) denotes the discounted sum of
payoffs that non-forest owners get in the non-cooperative setting.

The difference πcNF (xc)− πncNF (xnc) measures the individual gain that non-
forest owners obtain from cooperation. By the same token πncFO(xnc)−πcFO(xc)
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represents the loss that forest owners have in the cooperative setting vis-à-vis
the non-cooperative one. These two quantities are a function of T and r. We
compare them in Figure 6 for r = 2%.

Figure 6: Cooperation gains and losses by NFO and FO

The cooperative gain by non-forest owners is represented by the solid line;
while the loss by forest owners is represented by the dashed one. The vertical
difference between these two lines measures the net cooperative gain for any
given planning horizon. We observe that, for T ≥ T1 (with T1 = 11 years)

πcNF (xc)− πncNF (xnc) > πncFO(xnc)− πcFO(xc).

It is not the issue of this paper to determine how this cooperative solution can
be implemented. However, from Figure 6 it is clear that the implementation of
the cooperative solution will require some sort of compensation from non-forest
owners to forest-owners.

To sum up, the jointly optimal solution is different from the status quo one for
T sufficiently long (i.e., T ≥ T1) and involves greener outcomes. If the planning
horizon is short but not too long (i.e., T1 ≤ T < T3) it will be optimal to
mitigate the damage by increasing afforestation and decreasing deforestation,
but not to abate emissions. If the planning horizon is sufficiently long (i.e.
T ≥ T3) then it will be optimal both to mitigate (from the beginning) and to
abate emissions (from time t̃cV onwards). Emissions abatement has a greater
cost than increasing afforestation or decreasing deforestation, this explains why
it is preferable to start by applying less costly measures first and then move into
more drastical changes as environmental damages increase.
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4.2 Robustness analysis

Most of the parameters used in the forestry model proposed for forest owners
have been obtained from FAO’s Forest Resources Assessment (2006) or, when
unavailable at FAO, from other sources in the literature (see Appendix A). Pa-
rameters a and b used in non-forest owners’ payoff function have been calibrated
to fit world GDP while making sure that emissions’ gains are always increasing
and concave. Finally, parameter c captures the environmental damage coming
from the accumulation of greenhouse gases in the atmosphere and is key to the
model. There is great uncertainty as to what is the exact impact of emissions
on climate change and, therefore, on damage. For this reason attempting to
estimate parameter c is a hard task. In an effort to account for part of this
uncertainty on our results we have performed a sensitivity analysis with respect
to it and analyzed two cases of figure. First, in Case 1 we suppose the envi-
ronmental damage parameter (c) to be one third greater than the benchmark
case used so far. Then, in Case 2 we suppose c to be one third below the same
benchmark.

We have recomputed the cooperative outcomes obtained in the previous
section for these two cases of figure. We do not observe qualitative changes.
Just as before, we have four areas of interest Z1 − Z4. The behaviour in these
four areas is exactly the same. The only difference that we observe is that
cooperation will be more easily (i.e. earlier) achieved when the environmental
damage is higher (Case 1). The results are summarized in Table 5 below:

Table 5: Robustness of solution to changes in environmental damages

Discount
Benchmark Case 1 Case 2
T1 T2 T3 T1 T2 T3 T1 T2 T3

r = 1% 11 19 36 8 15 31 15 25 42
r = 2% 12 20 38 9 16 33 17 27 46
r = 3% 12 21 41 9 17 36 18 29 49

Table 5 shows the threshold times (T1−T3) for Case 1 and 2. These thresh-
olds are shifted downwards when c increases (Case 1) and upwards when c
decreases (Case 2). A downward shift in T1 indicates that the minimum plan-
ning horizon beyond which cooperation brings gains is reduced. Analogously, if
T2 and T3 are reduced this will mean that it is optimal to enhance cooperation
for shorter planning horizons than before, and vice versa for upwards shifts of
the thresholds.

To sum up, our results seem quite robust to changes in parameter c and,
even if the thresholds are affected, the structure of the solutions does not change
and cooperation is still strictly welfare improving for all the scenarios studied
regardless of the value of c used.
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5 Conclusions

Forests play an important role in mitigating climate change. In this paper
we have proposed a two-player model where forest owners have an incentive
to deforest so as to increase their economic revenues; while non-forest owners
suffer a negative externality coming from deforestation due to the so called
reduced-carbon-sequestration effect that states that a tree that is cut cannot
grow and hence cannot sequester carbon. We model the economic incentives
of both types of players and explore the conditions that make environmental
cooperation strictly welfare improving. We show that longer time horizons and
smaller discount rates help to better account for greenhouse gas accumulation
damage.

We have proposed three different mechanisms to reduce GHG accumulation:
abatement of emissions, increases in afforestation, and decreases in deforesta-
tion.

We show that for short planning horizons cooperation brings no gain. For
longer planning horizons it is jointly optimal to have some afforestation effort
and deforestation reduction. Cooperation brings tangible economic gains that
increase with the length of the planning horizon. For even longer planning
horizons it is optimal to combine forestation efforts with emissions abatement.
Reducing emissions is more expensive but also more effective in offsetting the
environmental damage coming from the excessive accumulation of GHGs.

Cooperation along with a sufficiently long planning horizon allows to partly
internalize the positive externality that the carbon sequestration by forests cre-
ates. Cooperation brings greener outcomes because it helps mitigate climate
change and slows down forest depletion.

Our results also convey a double positive message: First, considering the
carbon sequestration potential of forests can make a significant difference to stop
forest destruction. Second, international cooperation can bring sound economic
and environmental gains.

The results obtained in this paper are very promising. However, there are
many aspects that have not been considered and call for a critical interpretation
of the results: (i) A more comprehensive dynamics of the accumulation of green-
house gases should consider emissions related to land use change. (ii) Carbon
sequestration by the oceans may be affected by the excessive acidification of the
oceans. A more thorough research should integrate this aspect. (iii) We have
analyzed when is it that cooperation strictly improves joint welfare. However,
nothing has been said on how this cooperative solution could be implemented
nor on how the surplus arising from it would be distributed. (iv) One could en-
visage some sort of transfer mechanism as a way to ensure cooperation. In that
case it would be interesting to study the time consistency of the cooperative
solution with transfers.
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Appendix A: Variables & parameters description

State variables

F : Stock of Forest

Forest surface area of the world measured in hectares. The current stock of forest
F0 is estimated by FAO (2006) at 3952 million hectares in 2005. Parameter
F̄ = Fmax has been estimated for 1750 AD at 42% of the globe’s surface10 (i.e.,
13067 million hectares excluding Antarctica and Greenland). This gives us a
value for Fmax of approximately 5500 million hectares. Consequently, we require
that F (t) ∈ [Fmin, Fmax] =

[
0 · 109, 5.5 · 109

]
.

E : Yearly emissions of CO2

These are world yearly emissions of CO2 measured in metric tons. In 2005,
total CO2 emissions (E0) amounted to 28.2 billion metric tons, i.e., 7.7 GtC
(gigatons of carbon).11

S : Cumulated quantity of CO2 in the atmosphere

The cumulated stock of CO2 in the atmosphere is measured in gigatons. The
current stock of CO2 that we denote by S0 has been estimated to be approx-
imately at 3000 Gt of CO2 that are equivalent to 800 GtC (383-387 ppmv) in
2007.12

Control variables

A : Yearly afforestation [Amin, Amax] = [0, 3 · 106]
For the period 1990-2005, FAO (2006) estimates world yearly afforestation at
2.8 million hectares.

D : Yearly deforestation [Dmin, Dmax] = [0, 13 · 106]
For the same period, FAO (2006) estimates the average global deforestation rate
at 13 million hectares per year.

V : CO2 emissions adjustment rate [Vmin, Vmax] = [−0.015, 0.03]
During the decade going from 1990 to 2000 world CO2 emissions increased
roughly 1% every year.13 Only a few countries (e.g., Germany, United Kingdom,
Denmark, Finland, some Eastern European countries and former Soviet Re-
publics) were able to reduce their emissions. Germany was the most outstanding
case and achieved a 1.8% yearly cumulative decrease. On the other hand China’s
emissions increased at a rate of 3% per annum. All the other big economies lie
somewhere in between. Between 2000 and 2008, however, world emissions have

10Source: http://www.geo.vu.nl/˜renh/deforest.htm
11Source: EIA (2008).
12Source: NOAA (2007).
13Source: Bernstein et al. (2006) and EIA (2008).
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increased at a faster rate, 3.4% yr−1, (Le Quéré et al., 2009) with a probable
decrease during the next two years (2009-2010) due to the world crisis. Follow-
ing these observations we have set both the lower and upper bounds on V . As
a benchmark scenario we have chosen V ∈ [Vmin, Vmax] = [−0.015, 0.03].

Parameters

a, b : Emissions-output ratio parameters

Parameters a and b are chosen to ensure that (i) G(E) in 8 is increasing and
concave throughout and (ii) G(E0) equals world’s GDP estimate by the World
Bank for the year 2008.14 a = 2100, b = 4 · 10−9.

c : Environmental damage parameter

This parameter captures the impact of greater GHG concentration levels on the
welfare of individuals. c = 1.5 · 10−11.

S : Pre-industrial CO2 concentration level

Parameter S has been set to match preindustrial levels, i.e., 284 ppmv in year
183215 that are equivalent to 587 GtC.

κ1 : Per hectare afforestation cost

The World Bank estimates the cost for seedling at roughly 40 US$ per thou-
sand seedlings. The number of seedlings per hectare is equal to approximately
2000. This amounts to approximately 80 $ per hectare of forest in terms of
seedling. Afforestation costs also include other costs (e.g., labour costs) that
fluctuate with countries. The World Agroforestry Centre gives estimates for
the Philippines around 1000 $/ha. Other NGO organisations provide estimates
that range between 180 $/ha for Senegal and 400-500 $/ha for other countries in
Africa such as Sudan, Madagascar and Ethiopia.16 We have chosen the round
and representative value of 500 $/ha.

κ2 : Per hectare deforestation cost

The Bureau of Business and Economic Research of Montana University esti-
mates the costs of ground-based logging per green ton of harvest for the year
2006 at 22.70$.17 A green ton is equivalent 907 kg (2000 pounds of undried
biomass material). The density of wood is typically 500 kg/m3. For a repre-
sentative douglas fir plantation (530 kg/m3) we obtain a deforestation cost of
13.26 $/m3. If the yield per hectare, is equal to 110 m3/ha (see the estimation
of n below) then we obtain an estimate of the deforestation cost per hectare of
1459 $/ha.

14http://web.worldbank.org/
15Source: NOAA.
16See e.g., www.villageprojectsint.org and www.edenprojects.org
17www.bber.umt.edu/pubs/forest/prices/loggingCostPoster.pdf
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η : Natural growth rate of the forest

FAO (2006) estimates the average yearly natural expansion of world forests
to be equal to 2.9 million hectares, i.e., η F = 2.9 · 106 ha. Parameter η is
dimensionless and can be estimated accordingly: η = 7.34 · 10−4.

ϕ : Carbon absorption rate

This parameter is measured in metric tons of CO2 equivalent absorbed per
hectare of forest and year. According to Le Quéré et al. (2009) during the decade
from 1990-2000 forests absorbed 2.6 PgC yr−1(i.e., 2.6 GtC) which amounts to
9.53 GtCO2. World total forest area equals 3952 million hectares. If we consider
a homogeneous forest, its mean yearly carbon sequestration is 2.412 tonnes of
CO2 ha−1yr−1.

W : Carbon absorption rate by oceans

Le Quéré et al. (2009) estimate that oceans were able to sink, on average,
2.2 PgC yr−1(8.07 GtCO2 yr−1) during the period 1990-2000. We have set
parameter W equal to their estimate.

n : Per hectare timber yield

Timber yield is measured in m3 of wood per hectare. According to FAO (2006)
the mean wood content of a hectare of forest land in 2005 is equal to 110 m3.

β : Lower productivity due to forest depletion

Eswaran et al. (2001) estimate the productivity loss as a consequence of land
degradation, erosion, and desertification for the African continent at 8.2% of
average productivity. Average land productivity is measured by x (see the
estimation below). Parameter β is thus equal to 0.061 (8.2% of x).

γ : Selective logging yield, fraction of average yield

The selective logging yield is measured as a fraction of average yield. When
forests are managed for wood production they produce as much as 1-3 m3 per
hectare (in other words nγ =1-3m3). Following Andrés-Domenech et al (2011)
we set the value of γ = 1.5%.

δ : Fraction of forests selectively logged

Share of the world’s forests selectively-logged. Following FAO (2006), parameter
δ has been calibrated at 30% to fit the current world yearly production of wood.

θ : Slope of wood demand

According to FAO (2006), the commercial value of all wood (i.e., roundwood
and fuelwood) in 2005 was US$64 billion per year of which only 7 billion cor-
respond to fuelwood. Current world production equals 3400 million m3. The
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average price for both types of wood is 18.8 dollars per m3. FAO (1997) gives
the elasticity of demand for several countries and several types of wood.18 A
representative value of both the mean and median price elasticity of wood is
-0.50. We have approximated an iso-elastic curve by a linear one in an interval
of 2000 million m3 centred at 3400 million m3 such that the average elasticity
inside the interval equals -0.50. The slope of our demand can be then computed
and we obtain θ = −2.7 · 10−9.

p : Choke price of wood

With the average price of wood and the slope of demand computed above, we
can retrieve the choke price of our inverse demand function and obtain p = 27.98
(US$ per m3).

ψ : Extra productivity of deforested land

Parameter ψ denotes the productivity gain of land after deforestation. It is
measured as a fraction of average productivity. We adopt ψ = 0.3 following
Andrés-Domenech et al. (2011).

pA : Average price of representative agricultural product

Measured in US$ per metric ton. To determine the average price of the repre-
sentative agricultural good we took four representative commodities (i.e., cocoa,
coffee, cotton and sugar) from FAO (2004). These four commodities are related
to deforestation processes. The net economic yield per hectare of crop ranges
from 1660 $/ha for coffee to 771 $/ha for cocoa. The mean yield equals 1141
$/ha. Cotton is the more representative of the four in terms of prices and eco-
nomic yield (1467 $ per metric ton and 1088 $/ha). We use the price of cotton
as a reference.

x : Average land productivity

Measured in tons per hectare. Average land productivity has been computed
with the same four crops used to obtain pA · x is set equal to 0.742 metric tons
per hectare.

Appendix B: Proof of proposition 1

The Hamiltonian of forest owners’ control problem is:19

HFO (F,A,D, λ) = [p− θ (nD + nγδF )]n(D + γδF )

+ pA

[
x+

ψx

F̄ − F
D − β F̄ − F

F̄

] (
F̄ − F

)
− κ1A− κ2D

+ λ [A+ ηF −D] ,

18Most elasticity values are comprehended between -0.25 and -0.75
19The time argument is eliminated when no confusion can arise.
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where λ denotes the co-state variable associated with the forest stock. The
Lagrangian of forest owners can be written as:

LFO (F,A,D, λ,w1, w2) = HFO (F,A,D, λ) + w1D + w2 (Dmax −D) ,

where w1(t) and w2(t) are the Lagrange multipliers associated with the non-
negativity condition D(t) ≥ 0 and D(t) ≤ Dmax.20

The first-order optimality conditions read:

max
0≤A≤Amax
0≤D≤Dmax

LFO (F,A,D, λ,w1, w2) , (28)

Ḟ = A+ ηF −D, F̄ ≥ F ≥ 0, F (0) = F0, (29)

λ̇ = r
FO
λ− ∂LFO

∂F
, λ(T ) = 0, (30)

w1 ≥ 0, w1D = 0, D ≥ 0,

w2 ≥ 0, w2(Dmax −D) = 0, Dmax ≥ D.

The necessary condition for the maximization problem in (28) with respect to
the deforestation rate reads:

∂LFO

∂D
= 0; −2θn2 [γδF +D] + pn+ pAψx+ w1 − w2 − κ2 − λ = 0. (31)

With respect to the afforestation rate, A, we have a Lagrangian that is linear in

A and ∂LFO

∂A = −κ1 + λ . The optimal afforestation rate is a bang-bang policy
as follows:

A∗(t) =


0 if −κ1 + λ(t) < 0,

Ã ∈ [0, Amax] if −κ1 + λ(t) = 0,
Amax if −κ1 + λ(t) > 0.

(32)

The differential equation (30) for the co-state variable reads:

λ̇ = (r
FO
−η)λ+2θn2γδ(D+γδF )+2pAβ

F

F̄
+pA(x−2β)−pnγδ,

λ(T ) = 0. (33)

For the values of our parameters it can be proved that a maximum defor-
estation rate (D(t) = Dmax for all t ∈ [0, T ]) and a minimum afforestation rate
(A(t) = 0 for all t ∈ [0, T ]) satisfy the optimality conditions established above.
Replacing these optimal policies into the dynamics of the forest stock given in
(29) we have:

·
F = ηF −Dmax, F (0) = F0.

20To simplify the notation, we do not include Lagrange multipliers associated with the non-
negativity conditions on the other control variable, ρ(t), because this variable enters in a linear
way in the model and the optimal afforestation policy is bang-bang.
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The solution to this differential equation is given by (14). Plugging (14) in
equation (33) leads to:

λ̇ = (r
FO
− η)λ− pnγδ + 2θn2γδDmax + pA(x− 2β)

+ 2

[(
F0 −

Dmax

η

)
eηt +

Dmax

η

] [
θn2γ2δ2 + pAβ

1

F̄

]
, λ(T ) = 0.

From the integration of the above non-homogeneous linear differential equa-
tion we get the following

λ(t) =
1

η − r
FO

{
−pnγδ + 2θn2γδDmax + pA(x− 2β)

+ 2

[(
F0 −

Dmax

η

)
eηt +

Dmax

η

] [
θn2γ2δ2 + pAβ

1

F̄

]}
+Kλe

(r
FO
−η)t,

where Kλ denotes the constant of integration.
This constant Kλ can be retrieved using the transversality condition for the

co-state variable λ, λ(T ) = 0. The final expression of the co-state optimal time
path reads as in (15).

For our parameter domain λ always takes negative values and increases over
time to reach zero at T . Therefore, from (32), we conclude that the optimal
afforestation policy is A(t) = 0 for all t ∈ [0, T ].

∂LFO

∂D
= 0; −2θn2 [γδF +D] + pn+ pAψx+ w1 − w2 − κ2 − λ = 0.

Finally, to show that the optimal deforestation rate D∗ is indeed Dmax for
all t ∈ [0, T ] (and hence w1 = 0 and w2 6= 0), we replace the optimal time paths
of F and λ given by (14) and (15), respectively, in equation (31). Given our
parameters’ values we observe that if w2 = 0, then the LHS of equation (31) is
positive -instead of null- for all feasible F and D. The only way to avoid this
contradiction is by having w2 6= 0. In other words, forest owners maximize their
payoffs for D = Dmax and the forest area along the optimal path decreases with
time.

Appendix C: Proof of proposition 2

The Hamiltonian of the optimal control problem of non-forest owners is:

HNF (F, S,E, V, λF , λS , λE) = aE − 1

2
bE2 − c (S − S)

2

+ λF [A+ ηF −D] + λEV E + λS [E − ϕF −W ] .
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The first-order optimality conditions read:21

max
V

HNF ,

Ḟ = A+ ηF −D, F̄ ≥ F ≥ 0, F (0) = F0,

Ṡ = E − ϕF −W, S ≥ 0, S(0) = S0,

Ė = V E, E ≥ 0, E(0) = E0, V ∈ [Vmin, Vmax] (34)

λ̇F = r
NF
λF −

∂HNF

∂F
, λF (T ) = 0, (35)

λ̇S = r
NF
λS −

∂HNF

∂S
, λS(T ) = −dφ (S(T ))

dS(T )
, (36)

λ̇E = r
NF
λE −

∂HNF

∂E
, λE(T ) = 0. (37)

Since the Hamiltonian is linear in V , condition (34) and ∂HNF

∂V = λEE, lead to
the following optimal bang-bang solution:

V ∗(t) =


Vmin if λE(t)E(t) < 0,

Ṽ ∈ [Vmin, Vmax] if λE(t)E(t) = 0,
Vmax if λE(t)E(t) > 0.

Equations (35), (36) and (37) can be written as:

λ̇F = (r
NF
− η)λF + ϕλS , λF (T ) = 0,

λ̇S = r
NF
λS + 2c(S − S), λS(T ) = 2cφ[S − S (T )], (38)

λ̇E = (r
NF
− V )λE − a+ bE − λS , λE(T ) = 0, (39)

where

φ =
1

r
NF

(
1− e−rNF

T
)
.

Let us assume V (t) = V ∗ constant over the planning horizon, where V ∗

denotes either Vmin, Vmax or Ṽ . Solving the differential equation in (34) we can
characterize the optimal trajectory of emissions, E(t), which is given by (16).

From the problem of forest owners, the optimal path of the forest stock is
known and given by equation (14). Take equations (14) and (16), and plug them
in (34). Integration of the resulting expression gives the expression in (17).

Given our parameter domain, it can be shown that both the optimal paths
of emissions and stock of greenhouse gases are always greater than zero.

Using the expressions for the optimal paths of the state variables F (t), E(t)
and S(t) (expressions (14), (16) and (17) respectively), we can retrieve the
optimal paths of the three co-state variables.

21In order to simplify the presentation we do not explicitly introduce the Lagrangian func-
tion and the restrictions on the state variables, but we check a posteriori that all these re-
strictions are satisfied. The time argument is also eliminated when no confusion can arise.
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From the integration of the differential equation of the shadow price of the
pollution stock, λS , in (38), we get:

λS(t)=KSe
r
NF

t − 2c

r
NF

[
S0 − S −

E0

V ∗
+
ϕ

η

(
F0 −

Dmax

η

)]
+2c

[
1

r
NF

(
t+

1

r
NF

)(
W+

ϕ

η
Dmax

)
−ϕ
η

(
F0−

Dmax

η

)
eηt

η−r
NF

+
E0

V ∗
eV

∗t

V ∗−r
NF

]
,

where KS denotes the constant of integration. This constant can be easily deter-
mined using the transversality condition λS(T ) = 2cφ[S−S(T )]. After replacing
this constant on λS the optimal path of the shadow price of the pollution stock
reads:

λS(t) = Λ1 + Λ2e
−r

NF
(T−t) + Λ3t+ Λ4e

V ∗t + Λ5e
ηt,

where:

Λ1 = − 2c

r
NF

[
S0 − S −

E0

V ∗
+
ϕ

η

(
F0 −

Dmax

η

)
− 1

r
NF

(
W +

ϕ

η
Dmax

)]
,

Λ2 = −Λ1−2c

[(
W

r
NF

+
ϕ

η

Dmax

r
NF

)
T−ϕ

η

(
F0−

Dmax

η

)
1

η−r
NF

eηT+
E0

V ∗
eV

∗T

V ∗−r
NF

]
+2cφ[S − S(T )],

Λ3 =
2c

r
NF

(
W +

ϕ

η
Dmax

)
,

Λ4 = 2c
E0

V ∗(V ∗ − r
NF

)
,

Λ5 = −2c
ϕ

η

(
F0 −

Dmax

η

)
1

η − r
NF

,

S(T ) = S0 −WT − ϕ

η

(
DmaxT −

(
F0 −

Dmax

η

)
(1− eηT )

)
− E0

V ∗
(1− eV

∗T ).

Once we have λS we can plug it in expression (39) to obtain λE . Integrating
the resulting expression gives:

λE(t) =
a

r
NF
− V ∗

− bE0

r
NF
− 2V ∗

eV
∗t +

Λ1

r
NF
− V ∗

+
Λ2

V ∗
e−rNF

(T−t)e−2V ∗t

+
Λ3

r
NF
−V ∗

(
t+

1

r
NF
−V ∗

)
+

Λ4

r
NF
−2V ∗

eV
∗t+

Λ5

r
NF
−V ∗−η

eηt+KEe
(r

NF
−V ∗)t,

where KE denotes the constant of integration. To determine KE we use the
transversality condition λE(T ) = 0, and substitute its value in the expression
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above. The co-state variable λE(t) then reads as in expression (40).

λE(t) = (Λ1+a)
1

r
NF
−V ∗

(1− Γ(t))− bE0

r
NF
−2V ∗

(
eV

∗t−eV
∗TΓ(t)

)
+

Λ2

V ∗
[e−2V ∗te−rNF

(T−t) − e−2V ∗TΓ(t)] (40)

+
Λ3

r
NF
−V ∗

(
t+

1

r
NF
− V ∗

−
(
T+

1

r
NF
−V ∗

)
Γ(t)

)
+

Λ4

r
NF
−2V ∗

(eV
∗t−eV

∗TΓ(t))+
Λ5

r
NF
−V ∗−η

(eηt−eηTΓ(t)).

where Γ(t) = e−(rn−V ∗)(T−t).
The optimal path for the shadow price of the forest stock λF (t) can be

obtained analogously and is given by expression (41).

λF (t) = ϕ

[(
− Λ1

rn−η
+

Λ2

η
Ψ(t)

)
(1−Ψ(t))− Λ4

rn−η−V ∗
(eV

∗t−Ψ(t)) (41)

− Λ3

rn−η

(
t+

1

rn−η
−
(
T+

1

rn−η

)
Ψ(t)

)
− Λ5

rn−2η
(eηt−Ψ(t)e−ηT )

]
,

where Ψ(t) = e−(rn−η)(T−t).

Appendix D: Switching time

If there is only one switch in the optimal policy (switch at time t̃V ) then the
jump should be of the following type: First apply Vmax ∀t ∈ [0, t̃V ] and then
apply Vmin ∀t ∈ [t̃V , T ]. Applying Vmax always brings greater yields in the short
run than it does Vmin and if one optimizes using a positive discount rate it is
better to allocate emissions at the beginning of the planning horizon.

Recall that in absence of switching time we have that S(t) is given by (17).
Whereas, when there is a switch, the optimal expression for S(t) changes. We
now have a two-part expression, one before the switch and another afterwards.

S(t)=S0−tW−
ϕ

η
Dmaxt−

E0

Vmax
(1−eVmaxt)+

ϕ

η

(
F0−

Dmax

η

)
(1−eηt),∀t ∈ [0, t̃V ),

S(t)=S(t̃V )−
(
t− t̃V

)(
W +

ϕ

η
Dmax

)
− E0

Vmin
eVmax t̃V (1− eVmin(t−t̃V ))

+
ϕ

η

(
F (t̃V )− Dmax

η

)
eηt̃V (1− eη(t−t̃V )), ∀t ∈ [t̃V , T ],

where

S(t̃V )=S0− t̃VW−
ϕ

η
Dmaxt̃V −

E0

Vmax
(1−eVmax t̃V )+

ϕ

η

(
F0−

Dmax

η

)
(1−eηt̃V ).
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These expressions are straightforward to obtain considering that:

E(t) =

{
E0e

Vmaxt, ∀t ∈ [0, t̃V ]

E0e
Vmax t̃V eVmin(t−t̃V ), ∀t ∈ [t̃V , T ].

Once we have S(t), λS(t) can be computed using the transversality condition
from the salvage value function. Proceeding similarly as we did to obtain λS(t)
in the case without switch, the following expression for the interval [t̃V , T ] is
obtained:

λS(t) = Υ1 + Υ2e
−r

NF
(T−t) + Υ3t+ Υ4e

Vmin(t−t̃V ) + Υ5e
ηt, (42)

where:

Υ1 = − 2c

r
NF

[
S(t̃V )− S − E0e

Vmax t̃V

Vmin
+
ϕ

η

(
F (t̃V )− Dmax

η

)]

− 2c

r
NF

(
W +

ϕDmax

η

)(
t̃V −

1

r
NF

)
,

Υ2 = −Υ1 − 2c

[
W

r
NF

T +
ϕ

η

(
Dmax

r
NF

T −
(
F (t̃V )− Dmax

η

)
1

η − r
NF

eη(T−t̃V )

)
+
E0

Vmin
eVmax t̃V

eVmin(T−t̃V )

Vmin − rNF

]
+ 2cφ[S − S(T )],

Υ3 =
2c

r
NF

(
W +

ϕ

η
Dmax

)
,

Υ4 = 2c
E0e

Vmax t̃V

Vmin (Vmin − rNF
)
,

Υ5 = −2c
ϕ

η

(
F (t̃V )− Dmax

η

)
1

η − r
NF

.

Once λS(t) ∀t ∈ [t̃V , T ] is known, λS(t) ∀t ∈ [0, t̃V ] can be computed analo-
gously and can be written in a compact manner as follows:

λS(t) = Σ1 + Σ2e
r
NF (t−t̃V ) + Σ3t+ Σ4e

Vmaxt + Σ5e
ηt,
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where

Σ1 = − 2c

r
NF

[
S0 − S −

E0

Vmax
+
ϕ

η

(
F0 −

Dmax

η

)
−
(
W

r
NF

+
ϕ

η

Dmax

r
NF

)]
,

Σ2 = −Σ1−2c

[(
W

r
NF

+
ϕ

η

Dmax

r
NF

)
t̃V−

ϕ

η

(
F0−

Dmax

η

)
eηt̃V

η− r
NF

+
E0

Vmax

eVmax t̃V

Vmax−rNF

]
+λS(t̃V ),

Σ3 =
2c

r
NF

(
W +

ϕ

η
Dmax

)
,

Σ4 = 2c
E0

Vmax (Vmax − rNF
)
,

Σ5 = −2c
ϕ

η

(
F0 −

Dmax

η

)
1

η − r
NF

,

and where λS(t̃V ) is the boundary condition to this problem that can be ob-
tained by substituting for time t = t̃V in equation (42).

Now λS(t) ∀t ∈ [t̃V , T ] and λS(t) ∀t ∈ [0, t̃V ] are known; λE(t) ∀t ∈ [t̃V , T ]
and λE(t) ∀t ∈ [0, t̃V ] can be obtained analogously. In this case it is easier since
the boundary condition for λE (i.e., λE(T )) is equal to zero. The expression of
λE(t) ∀t ∈ [t̃V , T ] reads:

λE(t) =
a

r
NF
− Vmin

− bE0e
Vmax t̃V

r
NF
− 2Vmin

eVmin(t−t̃V ) +
Υ1

r
NF
− Vmin

− Υ2

Vmin
e−rNF

(T−t)

+
Υ3

r
NF
−Vmin

(
t+

1

r
NF
− Vmin

)
+

Υ4

r
NF
−2Vmin

eVmin(t−t̃V )

+
Υ5

r
NF
−Vmin−η

eη(t−t̃V )+KEe
(r

NF
−Vmin)t.

The constant of integration KE can be obtained using the transversality
condition λE(T ) = 0. Denote Π (t) = e(r

NF
−Vmin)(t−T ), then the value of

λE(t) ∀ t ∈ [t̃V , T ] can be written as follows:

λE(t) = (a+ Υ1)
1

r
NF
− Vmin

(1−Π (t))− Υ2

Vmin

(
e−rNF

(T−t)−Π (t)
)

− bE0e
Vmax t̃V

r
NF
− 2Vmin

(
eVmin(t−t̃V ) − eVmin(T−t̃V )Π (t)

)
+

Υ3

r
NF
− Vmin

[(
t+

1

r
NF
−Vmin

)
−
(
T +

1

r
NF
−Vmin

)
Π (t)

]
+

Υ4

r
NF
−2Vmin

(
eVmin(t−t̃V )−eVmin(T−t̃V )Π (t)

)
+

Υ5

r
NF
− Vmin −η

(
eη(t−t̃V )−eη(T t̃V )Π (t)

)
. (43)
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Similarly, for λE(t) ∀ t ∈ [0, t̃V ] we obtain the following expression:

λE(t) = (a+ Σ1)
1

r
NF
−Vmax

(1−∆(t))− bE0

r
NF
−2Vmax

(
eVmaxt−eVmax t̃V ∆(t)

)
− Σ2

Vmax

(
e−rNF(̃tV −t)−∆(t)

)
+

Σ4

r
NF
−2Vmax

(
eVmaxt−eVmax t̃V∆(t)

)
− Σ3

r
NF
−Vmax

[(
t+

1

r
NF
−Vmax

)
−
(̃
tV +

1

r
NF
−Vmax

)
∆(t)

]
+

Σ5

r
NF
−Vmax−η

(
eηt−eηt̃V ∆(t)

)
+λE(t̃V )∆(t), (44)

where λE(t̃V ) in (44) can be obtained from (43) and ∆(t) = e(r
NF
−Vmax)(t−t̃V ).

With the two equations for λE(t) (before and after the switch) the switching
time can be obtained. The switching time (provided it is unique) has to satisfy
the following first-order condition:

λE(t)E(t) > 0 ∀t ∈ [0, t̃V ),

λE(t)E(t) < 0 ∀t ∈ (t̃V , T ].
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