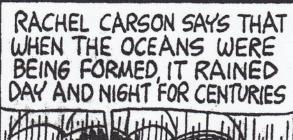
What's the weather today? It's smiling with some improvements over the weekend

Baldi Simona (University of Genova)
Canova Luciano (Enrico Mattei School)
Lentini Gianluca (University of Milan)

FEEM, 1 March 2012



Structure of the presentation

- Aim of the paper
- Literature review
- Climate in Italy
- Description of data
- Results

PEANUTS CHARLES SCHULZ

Literature on climate

- Easterlin paradox (1974), Kahneman and Deaton (2010)
- non market goods evaluation: climate and happiness (Maddison and Rehdanz, 2011; Moro et al., 2008)
- Climate and social cohesion (Durante, 2009)
- Climate and health:
 - Berry et al. (2011) farmers' mental health
 - Kim et al. (2011): suicide mortality; Bushman et al. (2005): risk of aggression

SWB and climate: problems with data

- Reliability of subjective evaluation of wellbeing (Kahneman, 1998; Schwarz)
- Not exploited temporal dimension of climate (that is, climate variability and change)
- Use of averages (or max and min), but...
- Averages are not consistent with instant utility
- They can't drive or determine a discrete and punctual report of subjective wellbeing

What we do in our paper

- Use day of the interview (Martinnson and Akay, 2009)
- Exploit temporal dimension of climate:
 - 1. we study the effect of punctual meteorological values on a specific day on the answer to the subjective well-being question;
 - 2. we consider the relative difference of the weather in the day of the interview with respect to the weather of the day before and with respect to the mean of the previous seven days
- Dependent variable: "Considering all aspects of your life, how happy would you say you are? Give a score from 1 to 10, 1 meaning "Very unhappy", 10 meaning "Very happy" and the values in between representing intermediate states"

Data

- Original dataset, merging SHIW 2006 and meteorological data from Department of Physics (University of Milan)
- Meteorological data:
 - air temperature (°C)
 - precipitation (mm/day)
 - relative humidity (%)
 - relative eliophany (%, nr of hours of direct solar radiation per day with respect to the astronomical expected values)

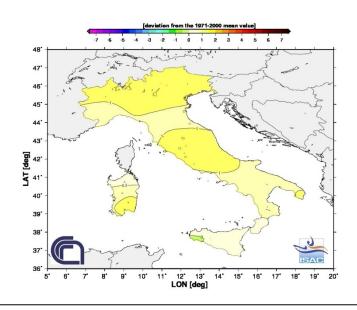
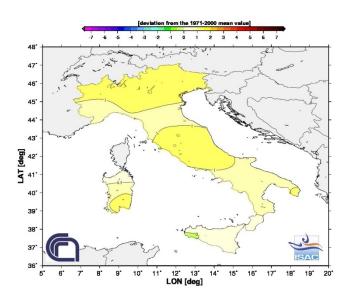

17 meteorological stations

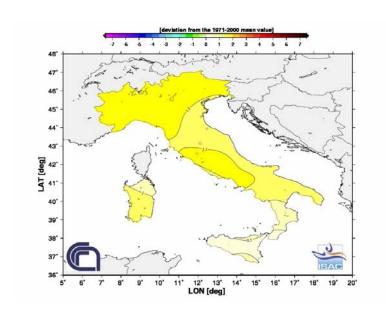
Table 1: Italian stations and available meterological series for each variable.

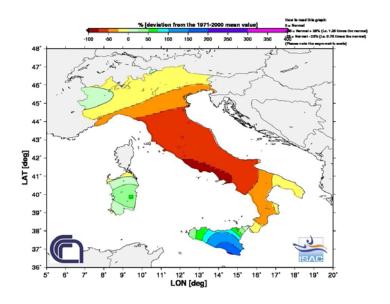

STATION	TEMP	PREC	RH	ELIOPHANY
Ancona (AN)	Falconara ^{AM}	Falconara AM	Falconara AM	Monsampolo
Bologna (BO)	Borgo Panigale AM	Urban	Borgo Panigale AM	Cesena
Brescia (BS)	Ghedi ^{AM}	Ghedi ^{AM}	Ghedi ^{AM}	Verona Villafranca AM
Brindisi (BR)	AM	AM	AM	AM
Cagliari (CA)	Elmas ^{AM}	Elmas ^{AM}	Elmas ^{AM}	Elmas ^{AM}
Firenze (FI)	Ximeniano Obs.	Ximeniano Obs.	Arezzo ^{AM}	S. Piero a Grado
Genova (GE)	Sestri	University	Sestri	Albenga
Milano (MI)	Brera Obs.	Brera Obs.	Piacenza	Piacenza
Napoli (NA)	Capodichino AM	Capodichino AM	Capodichino AM	Castel Volturno
Palermo (PA)	Punta Raisi AM	Observatory	Trapani Birgi ^{AM}	Trapani Birgi ^{AM}
Perugia (PG)	Marsciano	Santa Giuliana	Marsciano	Marsciano
Pescara (PE)	Urban	Urban	Urban	Castel di Sangro
Reggio Calabria (RC)	Urban	Urban	Urban	Sibari
Roma (RM)	Ciampino AM	Ciampino AM	Ciampino AM	Ciampino AM
Torino (TO)	Caselle ^{AM}	SMI	Caselle AM	Novara Cameri AM
Trieste (TS)	AM	AM	AM	AM
Venezia (VE)	Tessera AM	Cavanis	Tessera AM	Treviso S. Angelo AM

Note: AM stands for Aeronautica Militare, or Air Force. SMI is the Italian Meteorological Society.

Maps

Temperature Anomalies, Year 2011

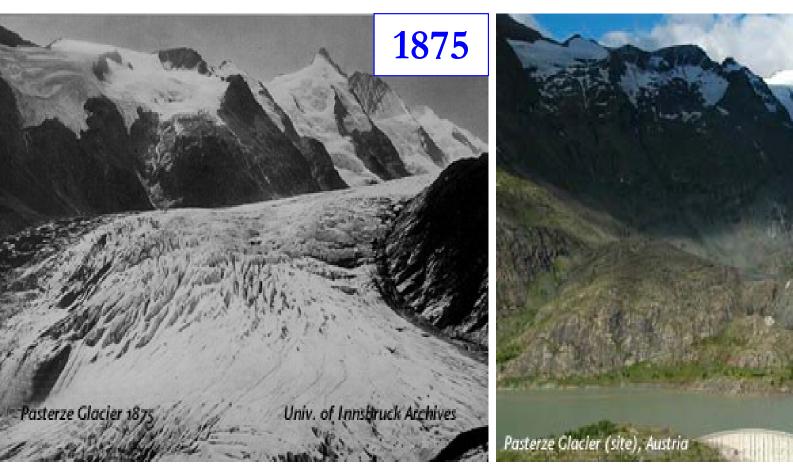



Precipitation Anomalies, Year 2011

Variations of temperatures (in °C) and precipitation (in %) in the year 2011 with respect to the 1971-2000 averages.

It's not a climate issue, it's a climate (temporal) change issue...

Maps



Temperature Anomalies, Autumn 2011

Precipitation Anomalies, Autumn 2011

Variations of temperatures (in °C) and precipitation (in %) in the Autumn 2011 with respect to the 1971-2000 averages. It's not a climate issue, it's a climate (temporal) change issue...

The Pasterze Glacier

2004

Pasterze Glacier (Austria) – winter 1875:2004

Descriptive statistics on happiness

Table 2: Descriptive statistics for happy variable

Value	Percent	Cum.
1	0.94	0.94
2	0.82	1.76
3	2.58	4.34
4	4.46	8.79
5	10.67	19.47
6	17.74	37.2
7	27.84	65.04
8	23.86	88.9
9	6.03	94.94
10	5.06	100

SHIW 2006

- 7768 households (19551 individuals and 13009 income-earners)
- Interviews collected between March, 1 and October 30 2007
- Due to availability of meteorological data, merging for day and place of interview, our sample is restricted to 6816 people
- Subjective well-being question is asked just to a subsample: 3298 people

Empirical strategy

- Ordered probit on swb
- Probit model (rescaled swb as a dummy variable)
- Robustness checks using different dependent variables:
 - salut (subjective evaluation of health status)
 - condgen (subjective evaluation of financial conditions)

	(1)	(2)	(3)
	Ordered probit	Ordered probit	Probit
sex	0.0243	0.0234	-0.00975
	(0.0525)	(0.0600)	(0.0735)
age	-0.0260***	-0.0217***	-0.0337***
	(0.00567)	(0.00637)	(0.00834)
age sq	0.000169***	0.000128*	0.000209**
	(6.14e-05)	(6.83e-05)	(9.11e-05)
household size	-0.0984***	-0.118***	-0.138***
	(0.0240)	(0.0259)	(0.0363)
medium edu	0.243***	0.166**	0.377***
	(0.0643)	(0.0744)	(0.0907)
high edu	0.353***	0.283**	0.401***
	(0.0976)	(0.114)	(0.149)
North-west area	-0.276***	-0.364***	-0.245**
	(0.0879)	(0.107)	(0.115)
Centre area	-0.300***	-0.281***	-0.308***
	(0.0698)	(0.0815)	(0.0935)
South area	-0.495***	-0.484***	-0.596***
	(0.0865)	(0.0956)	(0.113)
Islands area	0.199*	0.129	0.131
	(0.107)	(0.117)	(0.134)
town size: 20000-40000 inhab	-0.361***	-0.188*	-0.334***
	(0.0957)	(0.101)	(0.117)
town size: 40000-500000 inhab	-0.0357	0.121	-0.0216
	(0.0792)	(0.0878)	(0.102)
town size: more than 500000 inhab	-0.337***	-0.199**	-0.339***

	(0.0775)	(0.0907)	(0.108)
married	0.517***	0.501***	0.602***
	(0.0641)	(0.0730)	(0.0909)
In income	0.273***	0.399***	0.392***
	(0.0362)	(0.0501)	(0.0724)
wage earner	-0.181**	-0.216**	-0.0606
	(0.0898)	(0.102)	(0.133)
self employed	-0.139	-0.253**	-0.212
	(0.107)	(0.125)	(0.148)
not employed	-0.0919	-0.147	-0.0831
	(0.0921)	(0.103)	(0.126)
eliofaniarel	0.00292**	0.00365***	0.00419***
	(0.00116)	(0.00125)	(0.00149)
temperature	-0.0160***	-0.0137*	-0.0209**
	(0.00616)	(0.00720)	(0.00832)
Observations	2,745	2,745	2,745

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Focus on results

- Happiness decreasing and convex in age (U shaped)
- Married people happier than unmarried
- Education significantly and positively correlated with swb
- Income has a positive and significant impact
- Meteo:
 - temperature produces significant and negative effect on swb
 - **eliophany**: more sunlight is associated with increasing swb

Robustness checks

- Clustered observations at local level
- Different dependent variables: salut and condgen
 - Results hold for eliophany, with a strong and positive impact on swb

Conclusions

- Original contribution to swb literature:
 - new dataset combining SHIW with meteo
 - temporal dimension of meteorological data
- Strong and positive impact of sunlight on swb
- Problems: lack of data for winter season
- Policy relevance? Evaluation of nonmarket goods?

Thanks for your attention!!!

Precipitations

																						1		
	marc	h		april			may			june			july			augu	st		septe	mber		octol	ber	
Prov	min	max	mean	min	max	mean	in	max	mean	in	max	mean	in	max	mean	min	max	mean	min	max	mean	min	max	mean
B5	0	25.6	1.54	0	10.6	0.44	0	43.2	3.31	0	58.9	3.24	0	23.8	0.82	0	21	2.32	0	58.4	4.28	0	18.6	1.52
TO	0	14.4	1.05	0	18.4	0.69	0	42	3.72	0	63.8	7.17	0	13	0.65	0	48.6	2.96	0	29.8	2.73	0	24.2	1.74
MI	0	7.4	0.95	0	1.8	0.13	0	27.4	2.79	o	14.6	1.47	0	5	0.27	0	20	3.08	-			0	15.4	1.01
VE	0	20.8	2.90	0	0.2	0.01	0	37.2	2.70	o	14.4	1.44	0	9.8	1.01	0	19.6	2.12	0	118.8	7.51	0	11.8	1.32
TR	0	60.2	2.85	0	0.1	0.01	0	82.3	3.88	0	15.4	1.87	0	an.	0.98	0	15.6	2.31	0	31.8	5.04	0	12.2	0.84
GE	0	6.6	0.42	0	38	3.89	o	14.6	1.14	o	14.8	0.51	0	20.8	1.14	0	1.8	80.0	0	46	3.60	0	31	2.56
BO	0	28	3.63	0	12	0.66	0	15.2	1.34	0	59	4.40	0	1	0.04	0	8	0.61	0	9	0.83	0	66.2	4.64
FI	0	11.2	0.99	0	5.6	0.25	0	28.4	3.03	0	42.6	1.92	0	2.2	80.0	0	74.4	4.71	0	22.6	2.19	0	39	3.26
PG	0	31.2	2.38	0	1.4	0.07	ò	24.8	2.49	0	31.4	1.51	0	3.6	0.12	0	13.8	1.23	0	15.6	1.31	0	32.2	1.63
AN	0	30	6.57	0	20	2.04	0	32	5.14	0	18	1.41	0	0	0.00	0	26	4.12	0	5	1.67	0	20.2	10.10
RO	0	16.8	2.42	0	8.8	0.66	0	14.6	1.15	0	15.6	0.74	0	0.1	0.00	0	0.9	0.09	0	22.4	1.36	0	16.4	1.20
NA	0	41	4.56	0	23.8	2.74	0	22.4	2.03	0	10.4	0.60	0	0	0.00	0	3	0.10	0	77.8	3.59	0	41.4	2.54
BR	0	39.4	3.38	0	50	2.55	0	7.4	0.79	0	6	0.32	0	0	0.00	0	0.4	0.02	0	19.8	1.98	0	8.9	1.40
RC	0	22	2.48	0	18.8	0.91	0	14.2	0.86	0	23.8	4.28	0	0.4	0.20	0	0.2	0.03	0	18	3.17	0	83	5.96
PA	0	25.2	4.06	0	18.8	2.01	0	12	0.65	0	5.2	0.36	0	0	0.00	0	0	0.00	0	10.2	1.06	0	35.2	4.17
CA	0	14	2.12	0	25.2	2.47	0	9.8	0.60	0	20.2	0.74	0	8.0	0.03	0	0.1	0.02	0	0.1	0.01	0	10.5	0.97
Total	0	60.2	2.55	0	50	1.18	0	82.3	2.15	0	63.8	1.90	0	23.8	0.36	0	74.4	1.47	0	118.8	2.77	0	83	2.29

Temperatures

	march april				may			june			july			august			septe	mber		october				
prov	min	max	mean	Ė	mex	mean	in	mex	mean	min	max	mean	in	max	mean	min	max	mean	in	max	mean	in	max	mean
BS	5.3	12.5	9.78	11.5	21	16.59	14.3	25.8	20.07	15.4	27.1	22.57	19.4	28.6	24.82	17	27.2	23.22	13.2	23.3	18.79	6.6	20.5	13.84
TO	4.8	12.1	8.66	8.7	20.3	15.70	10.5	23	16.84	17.5	2.4	20.70	18	25.2	21.87	14.9	25.2	20.76	13.8	20.8	17.99	6.7	18.8	12.86
MI	9.1	19.4	15.02	13.9	25.7	21.59	15	29.4	22.55	16.4	30.9	25.59	23.7	33.6	29.11	19	29.9	25.82	_			11.7	23.4	17.57
VE	5.3	14.3	10.61	10.9	19	15.99	13.6	25.3	18.41	17.1	25.4	22.33	18.8	29.4	24.18	19.8	25.7	22_89	14.2	22.1	18.32	8_2	19.7	13.91
TR	7.4	17.5	12.48	10.9	21.6	17.49	15.1	25.8	20.48	19.4	27.1	23.81	18.8	30.2	25.18	21.4	27.5	23.97	14.8	22.5	19.35	8_6	20.4	15.09
GE	7.7	15.1	12.47	10.5	21.4	16.69	14.9	24.9	18.72	15.8	25.9	21.35	20.3	26.1	22.98	17.6	26	22_50	11.8	23.2	19.96	10.1	20.5	16.30
во	4.8	15	9.99	11.3	21.5	16.03	15.2	26.1	20.07	16.7	27.2	22.63	19.9	30.2	26.17	18.3	28.6	23.79	13.7	24.4	19.30	8_2	22.4	13.89
FI	5.6	15.7	11.34	11.6	20.7	17.41	14.5	27.1	19.67	17.2	29.3	23.44	21.6	30.5	26_30	20	28.5	24.36	13.4	24.3	20.19	7.6	21.9	15.71
PG	3.8	14.1	10.25	10.5	18.1	14.70	12.7	23.6	17.69	15.8	26.3	21.86	19.6	28.8	24.69	19	27.3	23.39	10.4	23.7	18.17	6.1	20.8	14.06
AN	8.3	17.9	12.49	11.6	18.4	15.20	15	24.1	19.42	17.5	26.8	22.64	18.7	28.5	23.87	19.1	27.1	22_77	16.4	22.1	18.64	8_5	19.7	14.33
RO	6.5	13.9	10.94	12	18.9	15.59	14.5	24.2	18.44	15.9	27.1	22.32	20.6	29.2	25.07	19.7	31.5	25.39	16.2	24.5	20.63	8_9	22.1	16.56
NA	8	15.9	12.78	12.7	19.2	16.51	16.8	22.6	19.15	17.7	28.1	22.77	22.3	29.3	25.27	23	31.6	26.54	16.8	24.9	21.02	8.5	22.2	17.40
BR	9.9	15.6	12.87	11.5	18.1	14.79	15.8	24.4	19.54	18.1	32.7	23.66	23	36.6	26.37	22.8	30.3	26.35	16.1	27.5	21.05	11.5	20	16.62
RC	9.7	17.6	14.22	13	21.3	16.72	18.5	24.9	21.47	17.6	33.6	25.03	24.3	35.8	28.52	26.9	32.4	28.85	20.1	28.1	24.00	12.9	25.3	20.80
PA	8.1	17.4	13.65	13.8	20.3	17.01	17.5	23.6	20.06	17.6	30.6	22.96	21.1	31.6	24.94	23.4	31.5	26.31	19.2	27.9	23.31	13.3	22.6	19.36
CA	7.3	17	12.58	11.4	18	15.74	16.3	24.7	19.23	17.6	26.8	23.02	21.7	29.7	25.10	23	31.2	26.08	17.5	28.1	22.16	10.6	24.3	18.24
Total	3.8	19.4	11.92	8.7	25.7	16.49	10.5	29.4	19.52	15.4	33.6	22.90	18	36.6	25.34	14.9	32.4	24.57	10.4	28.1	20.26	6.1	25.3	15.10

Eliophany

	marc	h	·	april			may			june			july			augus	t		septe	mber	·	octob	er	
prov	min	max	mean	min	mex	mean	min	rmax	mean	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	max	mean
BS	0	86.8	45.41	2.3	87.1	68.36	0	84.8	55.30	0	82.6	48.09	23.6	85.5	76.09	0	85.8	50.29	0	87.5	62.73	0	86.6	42.29
TO	0	82.3	42.93	5.4	78.2	54.97	0	83.2	44.19	0	72.9	41.68	7	83	65.38	0	82	38.97	0	86	59.28	0	78.3	43.06
MI	0	90.8	52.48	0	89.8	64.89	0.7	88.3	55.90	0	80.3	51.88	26.9	83.5	71_69	2.2	85.9	46.54	0	91.9	66.08	0	92	50.44
VE	0	93.8	44.78	18	87.2	68.11	0	86.2	54.33	0	82.7	51.64	37.7	86.2	70.96	3.6	83.2	54.54	4.2	89.8	60.08	0	93.6	41.82
TR	0	82.4	40.19	9.4	86.6	65.53	29.9	84.4	65.51	2.6	82.7	61.10	16	86.5	70.72	0	88.2	54.53	28	82.7	64.58	0	95.8	51.86
GE	0	95.3	55.18	0	95	70.65	2.9	93.2	61.35	15	92.9	59.87	42.9	94.9	82_67	3.6	93.8	65.87	7.4	96.7	75.96	0	95.8	69.17
ВО	0	93.4	49.62	0	94.7	77.10	14.4	95.2	71.74	2.4	96.3	68.54	63.1	96.6	86.84	8.1	95.2	67.76	30.9	93.3	74.22	0	90.7	45.47
FI	0	92.7	44.79	1.4	94.1	68.09	0.5	93.3	61.85	0.9	93.1	54.18	34.9	93.6	80.45	2.8	93.9	66.31	27.5	94.8	73.74	0	94.5	61.36
PG	1.2	94.2	44.93	0.4	95.4	72.64	9.6	94.4	59.27	6.9	89.4	63.07	42.2	94.7	83.49	13.5	95.8	69.10	20.1	97	66.03	0	95.9	51.90
AN	0	90.4	44.75	0	92.8	73.67	4.2	91.3	60.27	23.4	92.8	70.96	3.3	93.5	80.28	28.2	94.3	74.08	0.1	95.8	67.71	0	95.7	40.75
RO	0	87	43.57	0	88.4	61.52	3.3	86.1	61.20	0	83.1	67.20	40.7	87.3	78.70	2.2	89.2	70.38	15.3	89.6	63.57	0	92.5	57.09
NA	0	96	55.32	0.4	94.2	68.60	18.6	93.2	64.06	21	92.6	69.54	39.2	96.4	86.16	27.4	94.9	78.07	0	96.7	76.62	0	95.1	61.57
BR	0	88.2	46.99	0	91_3	69.13	6.4	88.9	60.33	10	86.8	66.90	69.8	86.8	81.56	54.7	90.6	78.00	0	92.8	68.84	0	95.5	40.42
RC	0	93.5	49.47	0	91.5	60.25	15	92.4	62.42	1.8	92.7	70.26	57.1	92.7	87.60	58.8	93	83.48	6.1	93.5	73.42	0	95.5	46.77
PA	0	88.6	48.88	3	90.4	61.28	0	87	63.43	0	81.9	68.88	63.7	92.7	82_19	24.5	90	74.86	7.9	94.7	65.98	0	82.6	51.81
CA	0.8	83	49.52	11.4	81.4	41.71	7.9	84.8	54.71	6.7	83.8	70.50	68.9	87.5	79.90	61.9	93.1	83.02	1.7	83.7	55.58	15.6	87.3	55.76
Total	0	96	47.81	0	95.4	66.55	0	95.2	60.19	0	96.3	61.99	3.3	96.6	79.87	0	95.8	67.98	0	97	68.13	0	95.9	50.80

Relative humidity

l a			•						1									•			1		
march			april			may			june			july			august			septen	iber		octobe	il.	
min	max	mean	min	mex	mean	min	miex	mean	min	max.	mean	min	miex.	mean	min	miex.	mean	min	IMIEX.	mean	min	mex i	
24.25	100	61.97	24.75	87.5	44.24	24.25	100	51.36	37.5	100	60.77	25	69.75	37.58	25.75	99.5	51.28	25.75	100	52.99	35.5	100 7	
33.75	85.25	59.80	36.25	82	52.68	36	86.5	58.73	46.75	82.25	63.55	34.5	75.25	49.74	38.75	83	58.28	37.25	75.5	56.30	47.75	79.5	
31	95.25	63.06	34.75	93.5	56.72	36	93.5	59.50	35.25	96	64.96	20.5	64	42.52	36.75	96	64.20	16.75	95.75	53.56	47	98.75 7	
38.25	84.5	59.41	39	74.25	54.05	34.75	96.75	62.23	39.75	83	62.34	37.5	72.5	56.43	43.75	89.5	61.24	43.5	91	62.19	45.25	93 (
26.25	92.75	36.23	16.5	75	52.40	22.25	85	61.22	43.75	80.5	61.04	33.75	73.75	35.39	37.5	89.5	63.06	29.75	82	36.74	27.5	82.5	
41	84.75	64.89	40.5	83.25	66.34	48	81	67.48	52.75	87.75	74.90	48.5	84.75	70.24	53	84.75	69.40	40.25	86	67.65	38.75	74.75	
44.25	95.75	67.57	35	84.25	55.69	34	86.75	52.50	26.5	94.25	57.58	19.5	50.75	34.68	23.25	85.5	47.49	30.25	73.5	47.51	45.5	94.75 6	
32	84	57.55	24	79.75	39.48	22.25	84	49.95	28.5	84.25	47.95	21.25	45.5	31.54	22.75	77.5	43.64	22.75	87.75	45.39	34.25	90 :	
41.3	83.2	64.41	34.7	78.6	45.41	33.1	84.6	52.07	31.1	68.6	45.45	20.6	51.7	29.53	24.4	82.5	42.78	28.1	72.2	45.07	31.8	91.5	
40	83	67.18	36.25	83.75	61.87	44	84.5	63.74	35.25	91.75	64.31	33	72.5	51.34	44	95.5	66.48	51.75	84.75	62.88	44	83.75 6	
45	81.4	64.99	37.5	73.6	55.28	31.2	80.5	56.51	33.5	89	50.96	22.5	59.1	38.44	22.3	67.1	46.09	26.2	76.8	52.28	29.3	86.5	
44.75	81.75	63.89	31.25	85.25	60.89	43	79.75	65.47	41.5	76.5	59.33	39	68	35.24	39.75	74.25	53.01	35	88.25	54.30	35.25	76.25	
47	93.25	69.88	47.75	87.5	70.94	29.25	86.5	80.08	23.25	88.25	62.70	15.5	82.5	35.90	36.5	76.25	58.80	43.75	76.75	39.31	44	83.75	
40	88.75	60.09	45.75	78	64.03	35.75	87.25	54.47	37.75	86.5	35.35	37.75	71.5	48.32	37.25	86.25	58.95	43.25	82	56.58	45.5	87 6	
55.5	86	75.77	37.25	82.5	66.09	42.25	85.75	70.50	11.5	89.75	62.48	31.25	80.25	63.27	34.75	88.5	66.74	36.25	89.5	68.39	50.75	88 7	
52.5	82	66.61	43.5	82	62.08	27.75	80.5	51.03	33.25	73	50.26	28.5	65	42.21	28	67.5	44.54	39	82.5	55.36	38.75	88.5	
24.25	100	64.12	16.5	93.5	56.53	22.25	100	58.21	11.5	100	59.04	15.5	84.75	46.80	22.3	99.5	55.17	16.75	100	55.48	27.5	100 6	

Descriptives of covariates

			Al	I sample			Subsample reporting happy score						
variable	label	mean	stel dev	min	max	n. obs	mean	std dev	min	max	n. obs		
Sex	SKX	0.482	0.500	0	1	6816	0.482	0.500	0	1	3298		
eta	age	44.869	22.493	0	98	6816	44.779	22.464	0	95	3298		
agesq	age squared	2519.083	2024.048	0	9604	6816	2509.650	2021.502	0	9025	3298		
ncom	household size	3.144	1.342	1	9	6816	3.126	1.381	1	9	3298		
edu 1	low education level	0.610	0.488	0	1	6816	0.619	0.486	0	1	3298		
edu 2	medium education level	0.305	0.460	0	1	6816	0.300	0.458	0	1	3298		
edu 3	high education level	0.086	0.280	0	1	6816	0.081	0.273	0	1	3298		
area 1	North-east area	0.293	0.455	0	1	6816	0.295	0.456	0	1	3298		
area 2	North-west area	0.112	0.316	0	1	6816	0.127	0.333	0	1	3298		
area 3	Centre area	0.312	0.463	0	1	6816	0.312	0.464	0	1	3298		
area 4	South area	0.184	0.388	0	1	6816	0.179	0.383	0	1	3298		
area 5	Islands area	0.098	0.298	0	1	6816	0.087	0.282	0	1	3298		
acom4c1	town size: 0-20000 inheb	0.188	0.391	0	1	6816	0.171	0.376	0	1	3298		
acom4c2	town size: 20000 - 40000 inhab	0.200	0.400	0	1	6816	0.217	0.413	0	1	3298		
acom4c3	town size: 40000-500000 inhab	0.369	0.482	0	1	6816	0.372	0.483	0	1	3298		
acom4c4	town size: more than 500000 inhab	0.244	0.429	0	1	6816	0.240	0.427	0	1	3298		
married	married people	0.511	0.500	0	1	6816	0.509	0.500	0	1	3298		
y	Income	36519.320	26299.560	0	473503.7	6816	36451.250	28621.290	0	473503.7	3298		
logy	Income squared	10.306	0.669	2.465	13.068	6815	10.298	0.678	2.465	13.068	3297		
g1	Employed	0.291	0.454	0	1	6816	0.293	0.455	0	1	3298		
q 2	self employed	0.069	0.253	0	1	6816	0.636	0.256	0	1	3298		
q 3	not employed	0.640	0.480	0	1	6816	0.636	0.481	0	1	3298		
perc	wage earner	0.661	0.474	0	1	6816	0.663	0.473	0	1	3298		