

Analisi di scenario a supporto delle policy in campo energetico: l'esperienza dell'Ufficio Studi dell'ENEA

Bruno Baldissara, Maria Gaeta, Carlo Manna - Ufficio Studi ENEA

FEEM-IEFE Joint Seminar, Milano 9 giugno 2011

Sommario

- TIMES: un modello tecnico-economico per il sistema energetico italiano
- Scenari ENEA:
 - Metodologia
 - Principali risultati
- Impatto socio-economico con le matrici SAM
- Conclusioni

Ufficio Studi ENEA

_

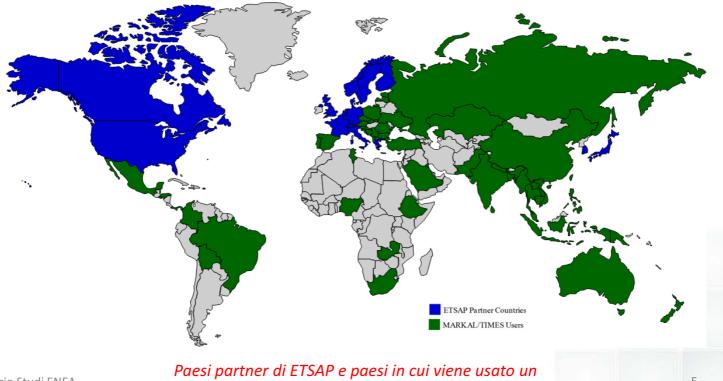
Le analisi di scenario a supporto delle policy in campo energetico e ambientale

Competitività economica, sostenibilità ambientale e sicurezza energetica sono gli obiettivi di politica energetica condivisi dai paesi membri dell'Unione Europea (Trattato di Lisbona, artt. 192 e 194) e dell'Agenzia Internazionale dell'Energia.

Il ricorso ad analisi di scenario ha l'obiettivo di esplorare possibili traiettorie di sviluppo del sistema energetico nazionale che conseguano al meglio tali obiettivi.

Le domande attorno a cui è incentrata una analisi di scenario per l'Italia sono dunque:

- E' possibile sviluppare il sistema energetico e ridurre in modo radicale le emissioni climalteranti?
- Quali tecnologie sono in grado di determinare cambiamenti radicali del sistema energetico italiano nei prossimi decenni?
- Quali azioni sono necessarie (investimenti, infrastrutture, ...) per soddisfare il fabbisogno energetico lungo le diverse traiettorie?
- In che modo queste traiettorie interagiscono con gli obiettivi di un sistema energetico più competitivo dal punto di vista economico e più sicuro dal punto di vista degli approvvigionamenti?


- ➤ Il generatore di modelli TIMES
- > Rappresentazione del sistema energetico italiano

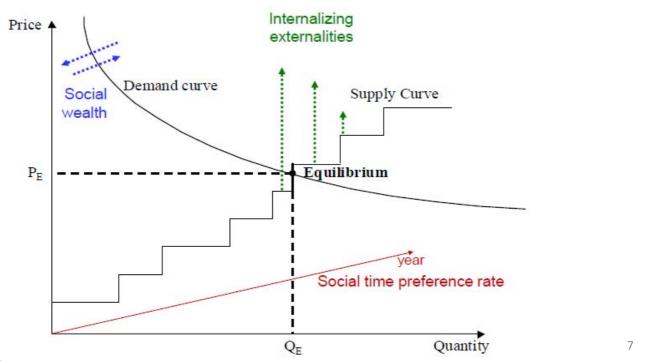
Ufficio Studi ENEA

-

Il TIMES è un generatore di modelli tecnico-economici di equilibrio economico parziale appartenente alla famiglia MARKAL-TIMES e sviluppato nell'ambito dell'Energy Technology Systems Analysis Programme (ETSAP) dell'IEA.

Ufficio Studi ENEA

modello della "famiglia MARKAL-TIMES"


PAESI ed ISTITUZIONI MEMBRI dell'ETSAP

Country	<u>CP/Institution</u>	Country	CP/Institution
	6		
Belgium	FPP/VITO-KUL	Japan	
Canada	NRCan/GERAD	Korea	KEMCO
Denmark	DEA/Riso	Netherlands	ECN
EC	JRC-IE Petten	Norway	IFE
Finland	VTT/TEKES	Russia	ERI-RAS
France	DGEMPEDAD/ADEME/EDMP	Spain	CIEMAT
Germany	IER	Sweden	STEM/Chalmers
Greece	CRES	Switzerland	PSI
Ireland	SEI - Uni-Cork	UK	DECC/AEAT
Italy	ENEA / CNR-IMAA	US	DOE/BNL

Ufficio Studi ENEA

E' un modello **bottom-up** di ottimizzazione intertemporale che **minimizza** il costo totale **del sistema energetico** in funzione di **vincoli** ambientali e tecnologici partendo dalla descrizione delle **tecnologie e dei flussi** del sistema energetico (consumi, costi e emissioni).

I modelli TIMES:

- generano **traiettorie** energetiche che soddisfano i requisiti della funzione obiettivo rappresentata dal costo totale del sistema (costi inv, O&M, vettori energetici) e dei vincoli imposti (tassazioni e sussidi),
- Individuano l'assetto di equilibrio economico domanda-offerta del sistema energetico considerato sul lungo periodo (allocazione ottima delle risorse).

8

Input:

- Useful Energy Demands / Energy Services (and Elasticities)
- Detailed CostsResource: investment, fixed, variable, fuel delivery, hurdle rates
- Technology Characteristics: Fuels in/out, efficiency, availability, technical life duration
- Resource supply steps, cumulative resources limits, installed capacity of technologies, new investment possibilities
- Environmental ImpactsFuels in/out, efficiency, availability, technical life duration
- Unit emissions per resource, per technology (operation, investment)
- System and other parameters: Discount rate, seasonal/day-night fractions, electric reserve margin

Output (in un orizzonte temporale definito):

- Produzione di energia per fonte e per uso finale
- Flussi dei vettori energetici (consumi di gas naturale negli edifici, produz. di gasolio dalle raffinerie...)
- Consistenza e efficienze dei parchi tecnologici
- Emissioni
- Costi marginali del sistema e delle singole risorse

(

PRINCIPALI APPLICAZIONI

Politiche:

- Analisi di Micro-misure in ogni settore: incentivi nei trasporti, i programmi di efficienza energetica, ecc
- Tasse sull'energia, incentivi (ad esempio, i certificati verdi e bianchi, puliti / tecnologie efficienti)
- Studi di allocazione ottimale di investimenti oltre che di spese annuali
- Valutazione della sicurezza energetica (opzioni import petrolio / gas / nucleare....)
- Valutazione del raggiungimento dei target europei di emissione

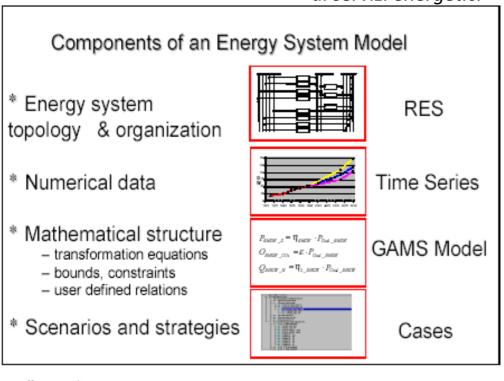
Tecnologie:

- Analisi della competitività delle tecnologie o delle catene energetiche (gas o rete di teleriscaldamento?)
- Valutazione di competitività e penetrazione delle tecnologie
- Analisi del ciclo di vita in un ambiente dinamico

PRINCIPALI APPLICAZIONI

Alcune recenti applicazioni di TIMES in ambito europeo:

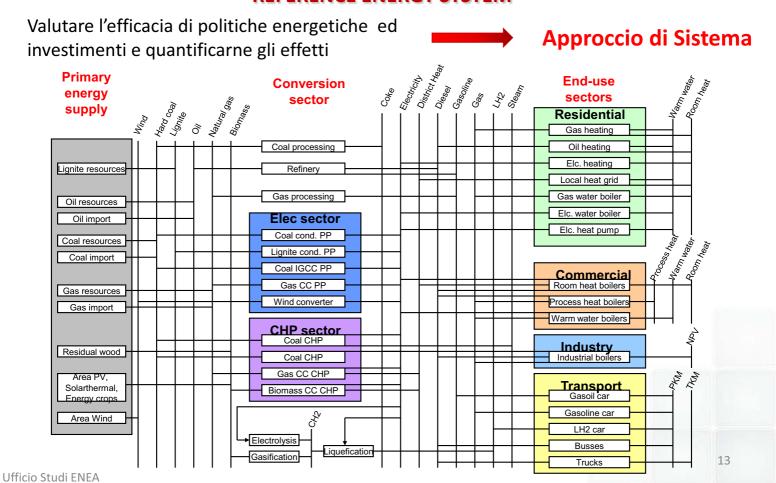
- **NEEDS** (New Energy Externalities for Developments in Sustainability)
- **RES 2020** (Monitoring and Evaluation of the RES directives implementation in EU25 and policy recommendations)
- **REALISEGRID** (REseArch, methodoLogles and technologieS for the effective development of pan-European key GRID infrastructures to support the achievement of a reliable, competitive and sustainable electricity supply)


Alcune recenti applicazioni di TIMES in ambito mondiale:

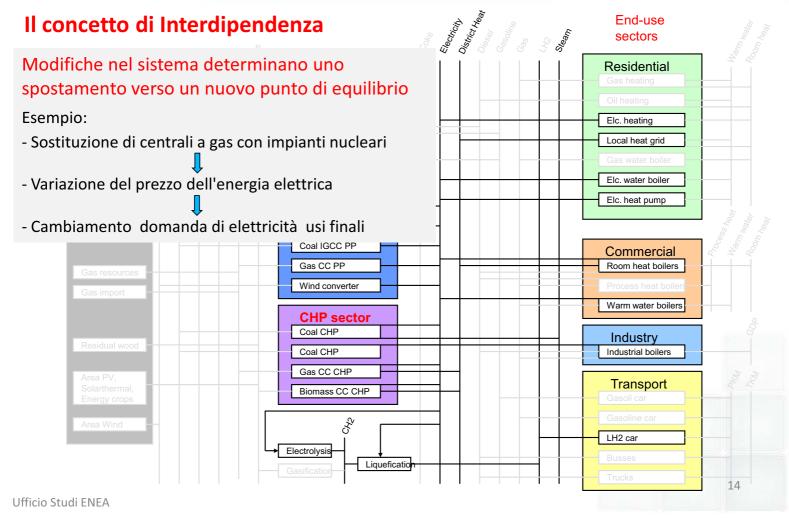
- **EFDA** (European Fusion Development Agreement, progetto della Commissione Europea per lo sviluppo della Fusione Nucleare)
- ETP (Energy Technology Perspectives IEA)
- TIAM (TIMES Integrated Assessment Model)

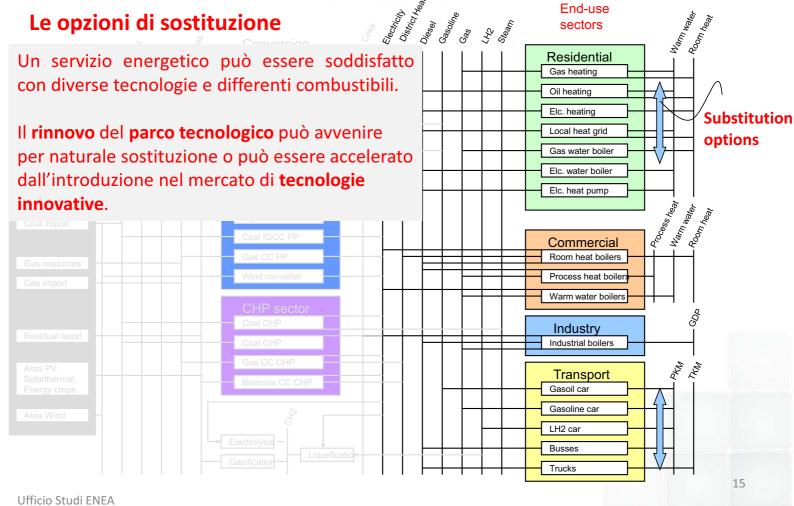
COMPONENTI DEL SISTEMA ENERGETICO

Il **RES** è il reticolo di **tecnologie** energetiche (produzione,distribuzione e utilizzo) e flussi di **commodities** (gas naturale, carbone, elettricità) che soddisfa la **domanda** di servizi energetici



- <u>banca dati</u> di tecnologie energetiche, organizzate in un reticolo detto Reference Energy System (RES)
- <u>Struttura matematica</u> composta da un codice scritto in linguaggio GAMS
- -<u>Interfaccia software</u> di introduzione e lettura agevole dei dati (VEDA).


12


REFERENCE ENERGY SYSTEM

LE TECNOLOGIE

Le tecnologie sono rappresentate quantitativamente da grandezze:

- fisiche, economiche ed ambientali (relative sia al livello tecnologico esistente, sia a quello prevedibile in futuro)

I dati tecnici per ogni tecnologia di produzione riguardano:

- il rendimento
- Il fattore di produzione
- La vita utile
- I vettori energetici utilizzati
- La potenza installata ed i suoi vincoli

I parametri economici riguardano:

- I costi di investimento
- I costi di gestione fissi e variabili
- La massima penetrazione nel mercato della tecnologia

I dati tecnici per ogni tecnologia di domanda riguardano:

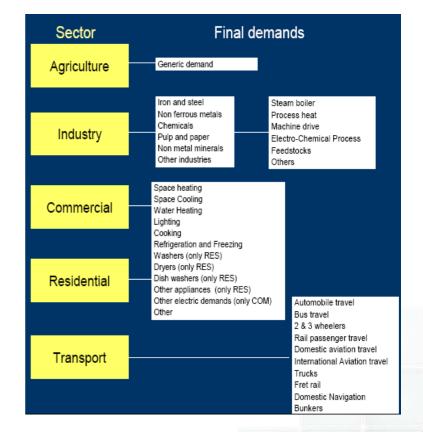
- l'efficienza
- La capacità installata
- La vita utile
- I vettori energetici utilizzati
- I vincoli sulla capacità installata

I parametri ambientali riguardano:

- I fattori di emissione per i singoli elementi inquinanti (CO₂, CH₄, N₂O, SO_x)

IL TIMES ITALIA:

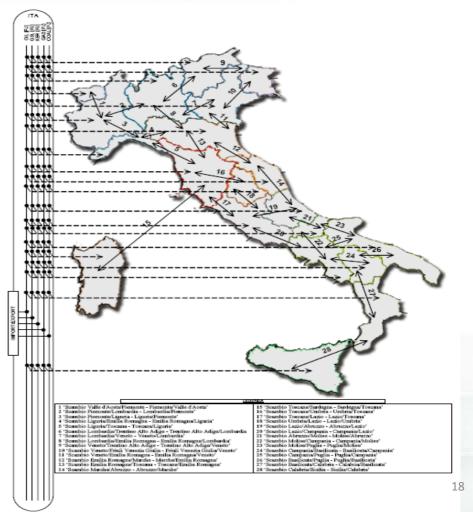
- Nasce nel 2008 dal TIAM globale (ETSAP)
- Anno base 2006


Ufficio Studi ENEA

- Orizzonte temporale: 2006-2050
- 42 domande di servizi energetici
- Dettagliata rappresentazione del settore elettrico
- Centinaia di tecnologie per la produzione, trasformazione ed utilizzo dell'energia

equazioni e 180.000 variabili

Risoluzione di un sistema con 120.000

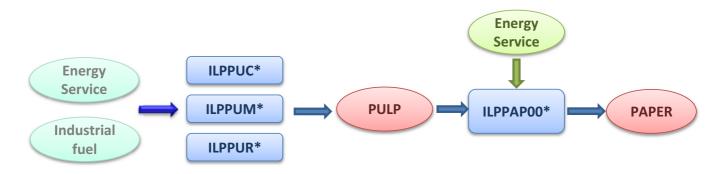


IL SETTORE ELETTRICO

Armonizzazione con il modello del settore elettrico MATISSE (RSE):

- 20 regioni
- Elevato dettaglio tecnologico (all plants > 10 MW)
- 12 TimeSlices: 4 stagioni, giorno/notte, picco
- Più livelli di tensione

Aggregazione a livello nazionale delle centrali del MATISSE

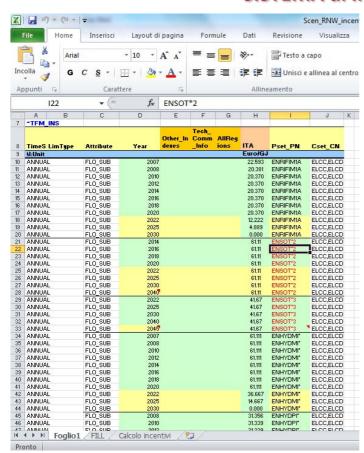


Principali parametri delle tecnologie di generazione elettrica da fonti rinnovabili

Descrizione	Start year	EFF	Life	Elife	Invcost (€/kW)	Fixom (€/kW)	Varom (€/GJ)	Ore equiv.	Disponib. picco (p.u.)
Impianto eolico tipo A	2007	1,0	15	15	1700	35,0	0,00	1902	0,20
Impianto eolico tipo B	2007	1,0	15	15	1700	35,0	0,00	1700	0,20
Impianto eolico tipo C	2007	1,0	15	15	1700	61,0	0,00	1902	0,20
Impianto eolico tipo D	2007	1,0	15	15	1700	61,0	0,00	1700	0,20
Impianto eolico Off-shore Impianto eolico Off-shore	2007	1,0	15	15	2800	60,0	0,00	3003	0,25
Acque profonde	2030	1,0	20	20	1800	100,0	0,00	3339	0,25
Impianti a biomassa scarti	2007	0,25	15	15	2350	75,0	1,11	5000	1,00
Impianti a biomassa fil. Impianti a biomassa scarti	2007	0,25	15	15	2350	75,0	1,11	5000	1,00
cocombustione (1) Impianti a biomassa fil.	2007	0,35	35	30	475	60,0	1,11	6658	1,00
Cocombustione (1)	2007	0,35	35	30	475	60,0	1,11	6658	1,00
Mini Idraulico	2007	1,0	30	30	4500	78,0	0,00	3507	0,30
Mini Idraulico >1 MW	2008	1,0	30	30	2250	33,0	0,00	3507	0,30
Impianto geotermico – AT Impianti fotovoltaici (tetti	2007	0,10	15	15	2750	86,0	0,00	7500	1,00
FV) Impianti fotovoltaici	2007	1,0	20	20	6000	50,0	0,00	1224	0,30
(centrali a terra)	2007	1,0	20	20	5000	50,0	0,00	1224	0,30
Biogas Agro-Zoo – BT	2007	0,30	9	9	3500	75,0	0,00	4993	0,70
Biogas Discarica – MT	2007	0,30	9	9	1100	0,0	3,19	4205	0,50
Solare Termodinamico (AT) con accumulo	2014	1,0	25	25	2700	0,0	13,89	3500	0,70

TECNOLOGIE DI PROCESSO PER L'INDUSTRIA CARTARIA

Descrizione Tecnologia	Consumi energetici nel 2006	Consumo specifico	Coefficiente riduzione consumi ¹	Costi di investimento	Costi fissi di manutenzione
	PJ	GJ/t		€/t_a	€/t_a
Pulp chimico	1.84	12	0.867	150	45
Pulp meccanico	1.5	4.44	0.701	345	18
Pulp meccanico-Bio ²	-	3.20	0.831	380	2
Pulp da carta riciclata	7.95	1.43	0.876	840	42
Produzione di carta	86.21	8.20	0.852	1300	6


Relativamente all'anno 2030 – fonte: EIA NEMS 2009

Ufficio Studi ENEA

Disponibilità della tecnologia nel 2020

SISTEMA di INCENTIVAZIONE

Incentivi per le FER:

- certificati verdi
- «conto energia» per FV

Assumptions:

- Estensione degli Incentivi al 2020
- Massimo potenziale di FER

⊿	A	В	C	D	E	F
10			Capacità (GW)	Max Fotovol	taici Bassa tens	ione (TETTI)
11			~UC_T: UC_RH	SRTS~UP		
					UC_RHSRTS~	
12	UC_N	Pset: PN	Year	UC_CAP	UP~0	ITA
13	AU_ELC_SOLNCAPB	ENSOL*B,ESOL*	2010	1	1	1.266
14		ENSOL*B,ESOL*	2016	1	1	2.800
15		ENSOL*B,ESOL*	2020	1	1	5.300
16		ENSOL*B,ESOL*	2030	1	1	6.400
17		ENSOL*B,ESOL*	2050	1	1	8.000
18						
19						
20			Capacità (GW)	Max Fotovol	taici Media tens	sione (CENTRA
			Capacità (GW) ~UC_T: UC_RH		taici Media tens	sione (CENTRA
21	UC_N	Pset: PN			uc_RHSRTS~	
21 22	UC_N AU_ELC_SOLNCAPM		~UC_T: UC_RH	SRTS~UP	UC_RHSRTS~	
21 22 23 24			~UC_T: UC_RH Year	SRTS~UP UC_CAP	UC_RHSRTS~	ITA
21 22 23 24 25		ENSOL*M	~UC_T: UC_RH Year 2010	SRTS~UP UC_CAP 1	UC_RHSRTS~	ITA 0.256
21 22 23 24 25 26		ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016	SRTS~UP UC_CAP 1	UC_RHSRTS~ 1	1TA 0.256 0.650
21 22 23 24 25 26 27		ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016 2020 2022 2025	SRTS~UP UC_CAP 1 1 1	UC_RHSRTS~ 1 1 1 1 1 1	0.256 0.650 1.024 1.372 1.720
21 22 23 24 25 26 27 28		ENSOL*M ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016 2020 2022 2025 2030	SRTS~UP UC_CAP 1 1	UC_RHSRTS~ 1 1 1 1 1 1	0.256 0.650 1.024 1.372 1.720 2.351
21 22 23 24 25 26 27 28 29		ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016 2020 2022 2025	SRTS~UP UC_CAP 1 1 1	UC_RHSRTS~ 1 1 1 1 1 1 1 1 1 1	0.256 0.650 1.024 1.372 1.720
21 22 23 24 25 26 27 28 29 30		ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016 2020 2022 2025 2030	SRTS~UP UC_CAP 1 1 1 1	UC_RHSRTS~ 1 1 1 1 1 1 1 1 1 1	0.256 0.650 1.024 1.372 1.720 2.351
21 22 23 24 25 26 27 28 29		ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M ENSOL*M	~UC_T: UC_RH Year 2010 2016 2020 2022 2025 2030	SRTS~UP UC_CAP 1 1 1 1	UC_RHSRTS~ 1 1 1 1 1 1 1 1 1 1	0.256 0.650 1.024 1.372 1.720 2.351

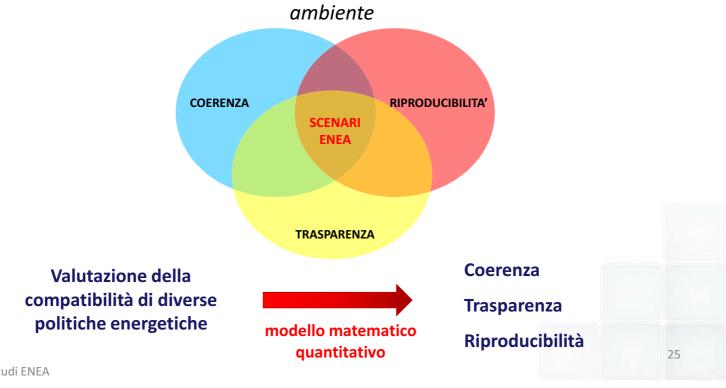
PRINCIPALI APPLICAZIONI in ENEA

- Rapporto Annuale Energia e Ambiente ENEA:
 Analisi e Scenari
- Contributo a molteplici pubblicazioni e attività ENEA
- Supporto ai decisori politici e Associazioni nazionali
- Analisi del pacchetto UE 20/20/20 per il governo italiano (come sostegno ai negoziati)
- Scenari nazionali per IEA Energy Technology Perspectives 2008
- Elaborazione di scenari energetici per il MISE
- Supporto alla Strategia Energetica Nazionale e al Piano di efficienza energetica

Un modello tecnico economico per l'Italia: La manutenzione del modello e il suo utilizzo

- Aggiornamento tecnologie e dati di input del nuovo modello Times-Italia
- Monitoraggio continuo delle evoluzione dei settori di uso finale
- Analisi di scenario come processo di "produzione della conoscenza", in grado di facilitare discussioni aperte e trasparenti, anche mettendo in comunicazione mondi diversi, ad es. ricercatori e decisori
- Trasparenza: completo accesso degli interessati a tutte le ipotesi che stanno dietro a ogni scenario (possibile futura disponibilità su web di dati di input e output del modello)
- **Documentazione**: descrizione dettagliata del modello, di numeri utilizzati per rappresentare il sistema, delle ipotesi alla base degli scenari

Scenari ENEA


- Metodologia
- > Principali risultati

Ufficio Studi ENEA

UNO SCENARIO NON E' UNA PREVISIONE!

Obiettivo dell'analisi mediante scenari è ipotizzare configurazioni alternative del sistema energetico e descrivere uno dei tanti futuri possibili quantificando le implicazioni e la compatibilità di strategie/politiche su usi energetici, economia ed

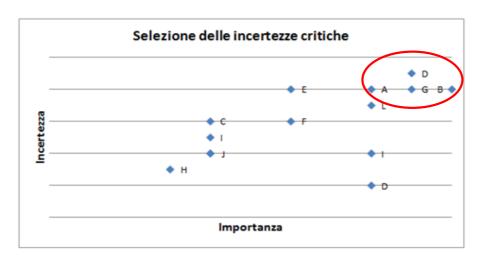
- Analisi di scenario finalizzata ad esplorare le incertezze del sistema energetico;
- Analisi di scenario come processo di "produzione della conoscenza", in grado di facilitare discussioni aperte e trasparenti, anche mettendo in comunicazione mondi diversi, ad es. ricercatori e decisori
- Il ricorso ad analisi di scenario permette inoltre di tenere insieme tutte le componenti del sistema, un elemento essenziale per garantire:
 - valutazioni quantitative circa la compatibilità tra obiettivi diversi;
 - criterio scientifico della *coerenza interna*, che implica che i valori assunti da tutte le variabili considerate siano coerenti fra loro;
 - trasparenza, che implica la riproducibilità di ogni scenario

QUESTIONI ATTORNO A CUI E' COSTRUITA L'ANALISI

- E' possibile una traiettoria di sviluppo del sistema energetico italiano in grado di mettere insieme sicurezza energetica, competitività economica e sostenibilità ambientale?
- Sono possibili traiettorie di sviluppo del sistema coerenti con radicali riduzioni delle emissioni climalteranti?
- Come si caratterizzano? Quali possono essere le variabili-?
- In che modo queste traiettorie interagiscono con gli obiettivi di un sistema energetico più sicuro dal punto di vista degli approvvigionamenti e competitivo dal punto di vista economico?
- Quali sono le condizioni necessarie per il soddisfacimento del fabbisogno energetico nel medio-lungo periodo (necessità infrastrutturali, ...)?

ELABORAZIONE DI SCENARI

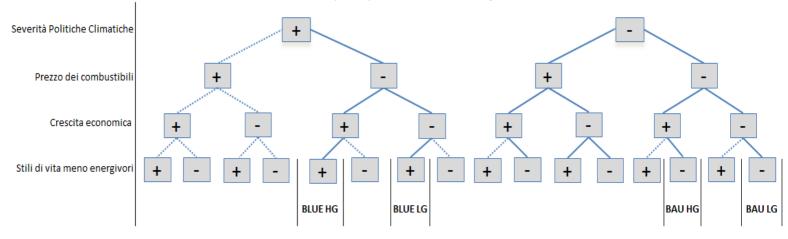
- 1. Identificazione e definizione delle questioni da esplorare
- 2. Elencazione dei fattori che hanno un ruolo-chiave nel sistema sotto osservazione
- 3. Ordinamento dei fattori suddetti secondo la loro a) importanza, b) incertezza
- 4. Sviluppo, intorno ai variabili-guida e alle "incertezze critiche", delle "storylines" che definiscono una descrizione qualitativa degli scenari "di riferimento" dell'analisi
- 5. Traduzione quantitativa delle storylines, in modo che risultino trasparenti e discutibili
- 6. Esplorazione e valutazione dei diversi scenari, mediante modelli quantitativi in grado di produrre scenari coerenti, consistenti, trasparenti
- 7. Analisi di sensitività degli scenari "di riferimento" rispetto ad incertezze relative a specifiche variabili di interesse (parametri e input del modello)


VARIABILI GUIDA NEL SISTEMA ENERGETICO ITALIANO

- A. Stringenza delle politiche contro il cambiamento climatico
- B. Prezzi dell'energia sui mercati internazionali
- C. Incertezza sulla stabilità degli approvvigionamenti e politiche di sicurezza energetica
- D. Crescita economica e sue caratteristiche (settori energy intensive)
- E. Rilievo dei costi economici delle politiche (rispetto ad altri criteri: emissioni di gas-serra, qualità dell'aria, sicurezza energetica, ...)
- F. Crescita demografica
- G. Diffusione di stili di vita meno energivori
- H. Influenza delle scelte sovra-nazionali sul sistema
- I. Attribuzione centralizzata o decentrata delle responsabilità decisionali (governo, regolatori, enti locali)
- J. Equilibrio fra programmazione e mercato e ruolo strategico delle imprese private
- K. Struttura dei mercato dell'energia
- L. Progresso delle tecnologie di sequestro e cattura della CO2
- M. Facilità di interconnessione per la generazione distribuita

N. ...

LE INCERTEZZE CRITICHE



		+	-
stringenza politiche climatiche	carbon price 2030	>> 50\$	< 50\$
prezzo del petrolio	valore 2030	> 90\$/bbl	< 90\$/bbl
crescita economica	PIL	> 1.5%	< 1.5%
diffusione stili di vita meno	servizi energetici	elast. al reddito <	elast. al reddito >
<u>energivori</u>	Servizi ellergelici	0.8	0.8

ALBERO DEGLI SCENARI

L'analisi di scenario è costruita attorno ad alcune "incertezze critiche", rappresentate quantitativamente da "variabili-chiave" ciascuna delle quali può evolvere lungo due traiettorie alternative.

FATTORE	VARIABILE	+	-
Severità Politiche Climatiche	Prezzo della CO2 al 2030 *	92 €/t CO2	40 €/t CO ₂
Prezzo del petrolio	Valore al 2030 *	150 \$/bbl	80 \$/bbl
Crescita economica	PIL medio annuo 2010-2030	1.9 %	1.2 %
Stili di vita meno energivori	Elasticità della domanda ai prezzi	Si	No

* Secondo parametri scenari WEO 2009

Ufficio Studi ENEA

VARIABILI CHIAVE

Variabile	Unità di misura	2008*	2010	2020	2030	2040	2050
Popolazione	MIn ab	59,56	61,1	61,6	62,1	62,2	61,7
Prezzo Petrolio Basso *	\$08/bbl	81,8	<i>67,7</i>	72,0	80,0	84,0	88,0
Prezzo Petrolio alto *	\$08/bbl	81,8	89,5	130,0	150,0	157,5	165,0
Prezzo Gas Basso *	€/GJ	6,53	6,5	6,9	7,7	8,1	8,5
Prezzo Gas alto *	€/GJ	6,53	7,5	12,4	14,4	15,1	15,9
Prezzo Carbone Basso*	€/GJ	3,18	2,2	2,3	2,4	2,5	2,7
Prezzo Carbone alto∗	€/GJ	3,18	3,3	4,2	4,5	4,7	5,0
Prezzo CO ₂ basso	€/t	10	13	30	39	40	40
Prezzo CO₂ alto	€/t	10	13	42	92	140	200
		`05-10	`10-15	`15-20	`20-25	′25-30	′30-50
PIL Alto**	Var % annua	-0,50	2,0	2,1	1,8	1,5	0,8
PIL basso	Var % annua	-0,50	1,7	1,2	1,0	0,8	0,4

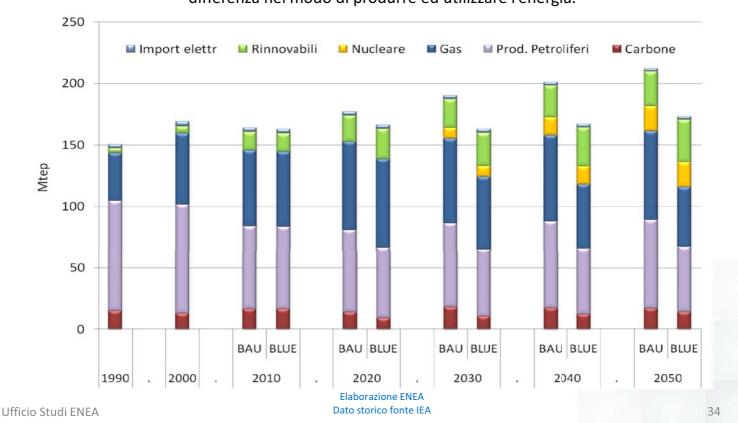
^{*}Dato storico;*** PIL 2009(market prices): 1.208 Mld € (valori concatenati 2000)

Fonte: elaborazione ENEA

^{*} Secondo scenari WEO 2009

SETTORE	MISURA	BAU	BLUE
TUTTI I SETTORI	Riduzione delle emissioni di CO2	NO	Carbon Price: 42 €/tCO2 nel 2020 (200€ nel 2050)
	Contenimento emissioni nei settori ETS (2009/29/EC, 2003/87/EC, 2008/101/EC)	prezzo dei permessi 30 €/tCO2 nel 2020 (39 nel 2050)	-
FONTI	Estensione degli incentivi fino al 2020 (graduale azzeramento nel 2030)	SI	SI
PRIMARIE GENERAZIONE	Piano di Azione Rinnovabili	-	SI
ELETTRICA E CALORE	Reintroduzione nucleare (Max 7 impianti EPR da 1,6 GW con start 2025)	SI	SI
INDUSTRIA	Impianti elettrici in programmazione	REALIZZATI	REALIZZATI
	CCS (limite max capacità di stoccaggio in Italia)	NO	SI
	Motori elettrici (dal 2017 minimo classe le3) (2009/640/EC)	SI	SI
TRASPORTI	Livelli di emissioni autovetture nuove (reg. 2009/443/EC)	130 gCO2/km dal 2015	95 gCO2/km dal 2020
CIVILE	Consumi apparecchiature elettriche (EUP 2005/32/CE) Prestazioni ed integrazione FER negli edifici (EPBD 2002/91/EC)	NO	SI

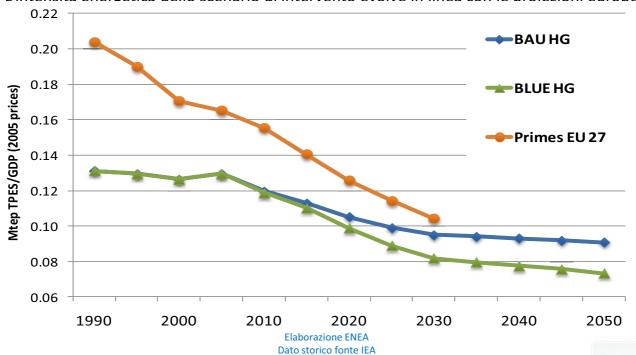
Ufficio Studi ENEA


LE IPOTESI DI SCENARIO

Scenari ENEA - Principali Risultati

ENERGIA PRIMARIA

Misure, politiche ed investimenti previsti negli scenari di intervento determinano una sostanziale differenza nel modo di produrre ed utilizzare l'energia.



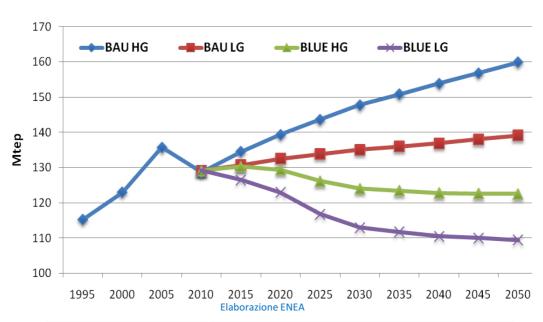
Scenari ENEA - Principali Risultati

INTENSITA' ENERGETICA

L'intensità energetica dello scenario di intervento evolve in linea con le proiezioni europee

 % riduz m.a
 2010-2030
 2030-2050

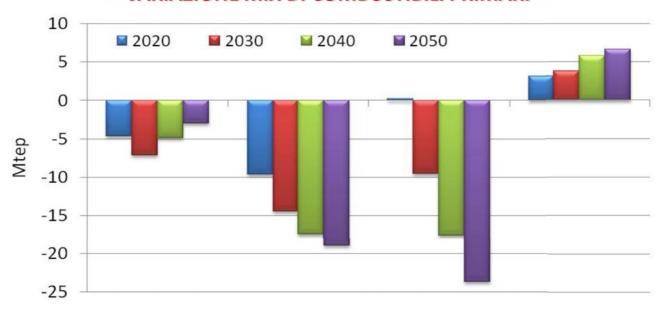
 BAU HG
 -1.2
 -0.3


 BLUE HG
 -1.8
 -0.7

Ufficio Studi ENEA

Scenari ENEA - Principali Risultati

CONSUMI FINALI DI ENERGIA

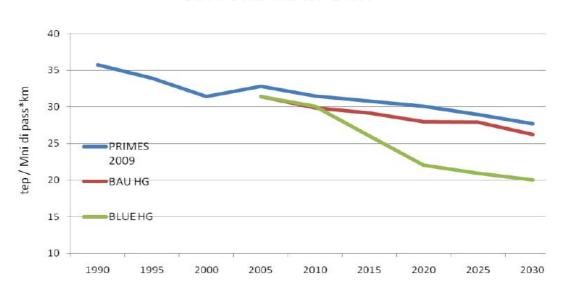


Mtep	2020	2050
BAU HG	140	160
BLUE HG	130	123
BAU LG	1327%	13921%
BLUE LG	123	110

Ufficio Studi ENEA

VARIAZIONE MIX DI COMBUSTIBILI PRIMARI

Carbone Petrolio Gas Rinnovabili


% comb. fossili	2020	2050
BAU HG	86%	76%
BLUE HG	81%	65%

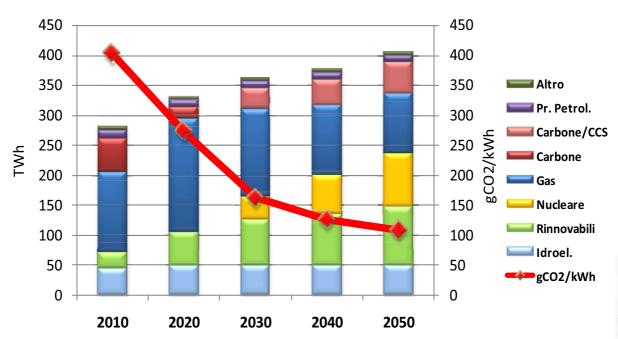
Ufficio Studi ENEA

Elaborazione ENEA

SETTORE TRASPORTI

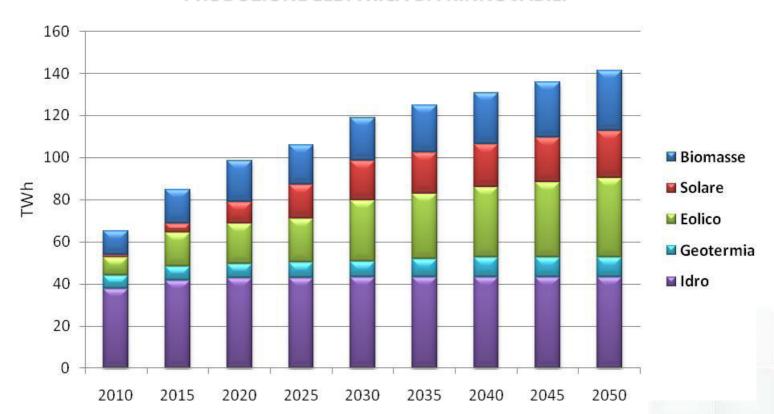
Fonte: elaborazione ENEA

L'incremento di efficienza del parco auto (oltre il 30% rispetto al 2005 nel BLUE HG) è dovuta:

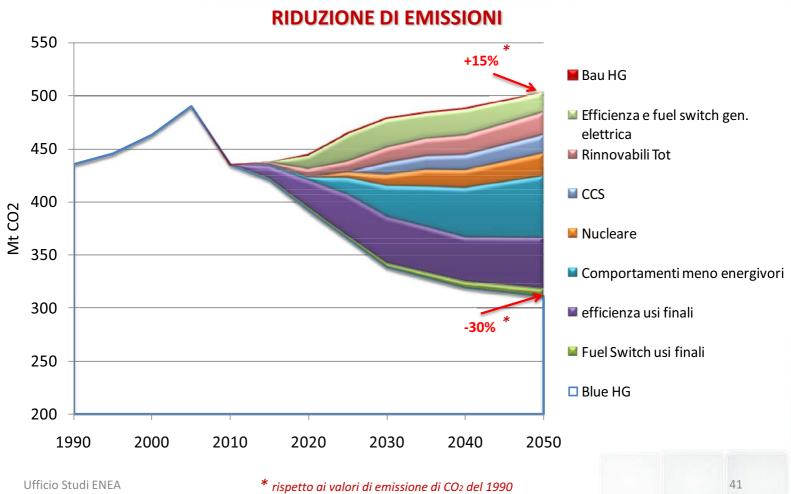

- Al miglioramento delle prestazioni dei veicoli ad alimentazione tradizionale (dal 2005 al 2030 i consumi medi in km/l delle auto a benzina passano da 14 a 15.5, quelle a diesel da 17 a 21);
- •Alla penetrazione massiccia di veicoli di nuova generazione (nel BLUE HG);

GENERAZIONE ELETTRICA PER FONTE

Rinnovamento del parco di generazione elettrica nello scenario di Intervento:

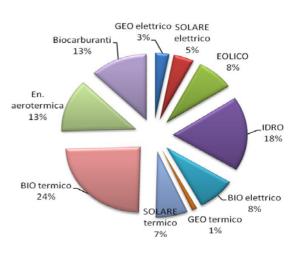

- Reintroduzione del Nucleare;
- Diffusione di impianti di generazione con CCS;
- Incremento produzione da Rinnovabili.

Ufficio Studi ENEA



PRODUZIONE ELETTRICA DA RINNOVABILI

Nel lungo periodo le tecnologie di produzione elettrica da FER risultano competitive sul mercato anche in assenza di sistemi di incentivazione

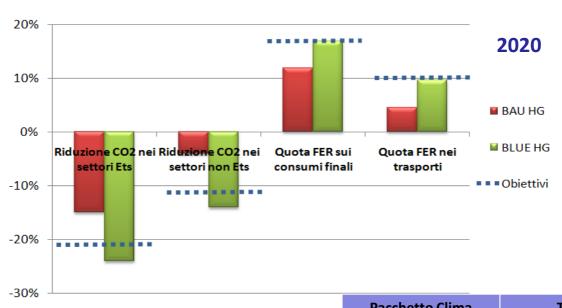


OBIETTIVI di MITIGAZIONE: medio periodo (2020)

Le tecnologie-chiave

Fuel Switch usi finali 4% gen. elettrica 25% Rinnovabili Tot 16% Comportamenti meno energivori 5%

Mix Fonti Rinnovabili



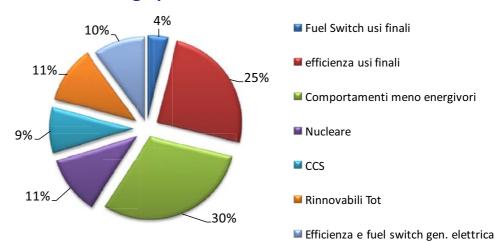
Contributo settori 2020	Mt CO ₂	%	
Parco generazione elettrica	18	33	
Trasporti	17	32	
Civile	13	25	
Industria	5	10	
TOTALE	53	100	

Ufficio Studi ENEA

OBIETTIVI di MITIGAZIONE: medio periodo (2020)

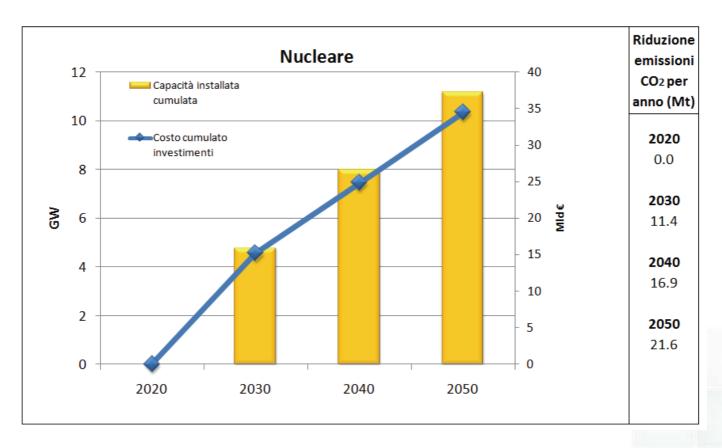
L'azione congiunta dell'efficienza energetica e di un maggior ricorso alle fonti di energia rinnovabili permette di raggiungere gli impegni di riduzione delle emissioni.

Energia 2009/29/EC	iarget		
FER/Consumi Finali	17%		
FER nei trasporti	10%		
Settori ETS	-21% (risp 2005)		
Settori Non ETS	-13% (risp 2005)		



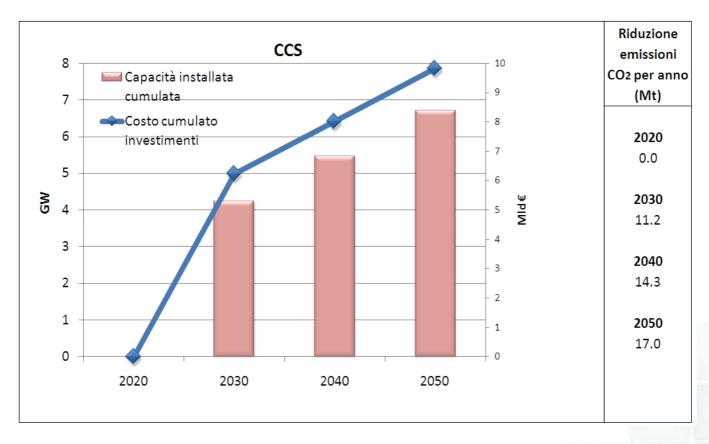
OBIETTIVI di MITIGAZIONE: lungo periodo (2050)

Le tecnologie-chiave nel lungo periodo 2050


Nel lungo periodo diventa centrale il ruolo di Nucleare, CCS e Rinnovabili, insieme ad un uso più consapevole dell'energia

Contributo dei settori nel 2050	Mt CO ₂	%	
Parco generazione elettrica	75	39	
Trasporti	42	22	
Civile	42	22	
Industria	33	17	
TOTALE	192	100	

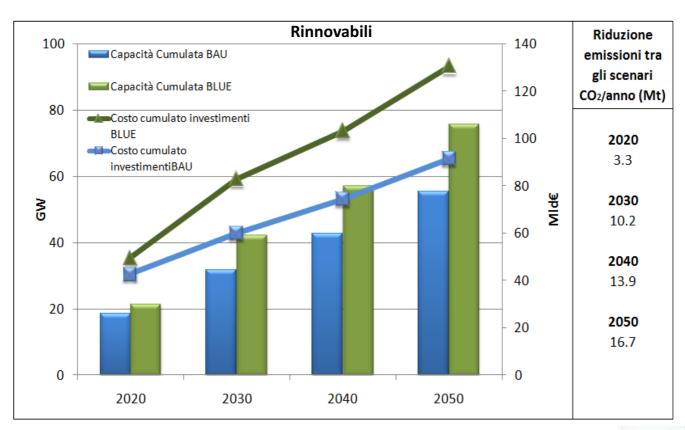
Ufficio Studi ENEA



Realizzazione primo impianto: 2025

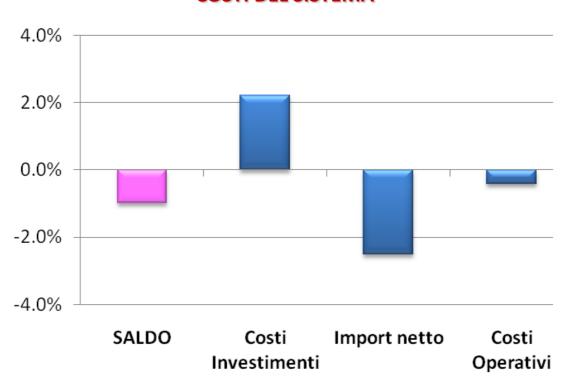
Capacità max installabile: 7 impianti EPR da 1,6 GW

45



Nello scenario di intervento dal 2030 in poi tutti i nuovi impianti a carbone prevedono sequestro e cattura della CO2

Ufficio Studi ENEA



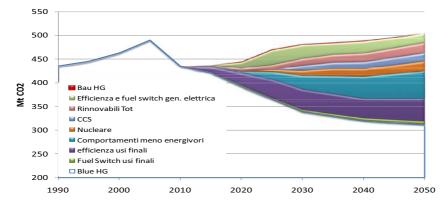
Nello scenario di intervento la penetrazione di rinnovabili è favorita dalla penalizzazione degli impianti a fonti fossili per effetto dell'aumento del carbon price Ufficio Studi ENEA

COSTI DEL SISTEMA

Variazione complessiva dell'onere del sistema e delle singole voci di costo tra gli scenari di intervento e di riferimento (%). Periodo 2010-2050

49

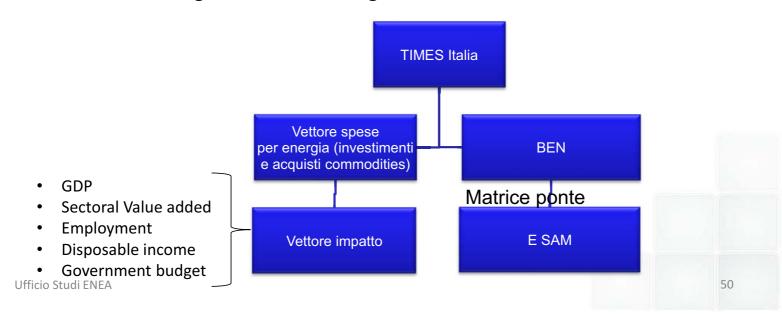
Quali indicazioni dalle Analisi di Scenario?


- •Quali sono i settori che presentano i maggiori margini di riduzione dei consumi (o meglio, di emissioni)?
- •Quali gli interventi con miglior rapporto costi- benefici?
- •Quali le priorità di intervento?

Ufficio Studi ENEA

•Quali politiche risultano maggiormente efficaci?

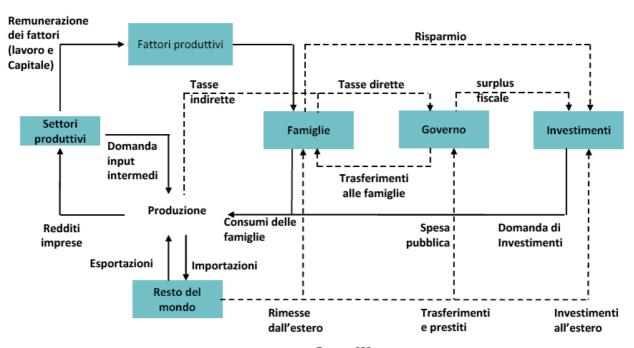
Supporto alla definizione della Strategia Energetica Nazionale



INTEGRAZIONE DEL TIMES CON LE MATRICI DI CONTABILITA' SOCIALE

La SAM (Social Accounting Matrix, ovvero Matrice di Contabilità Sociale) può valutare utilizzando gli output degli scenari ENEA:

- L'impatto macroeconomico delle spese legate al settore energetico
- Il cambiamento strutturale dell'economia derivante dall'introduzione di nuove tecnologie nel settore energetico.


La matrice di contabilità sociale (SAM, dall'inglese Social Accounting Matrix) è una matrice a doppia entrata che registra i flussi che intercorrono tra gli operatori di un sistema economico. Essa consente di esaminare quantitativamente i rapporti di scambio e di interdipendenza che si stabiliscono tra tutti gli agenti di un sistema economico.

Lo schema di raccordo segue due direttrici fondamentali:

Da un lato si forniscono alla SAM i dati relativi agli investimenti e all'acquisto di beni di consumo per valutare l'impatto dell'evoluzione del sistema energetica sull'economia. Parallelamente è possibile considerare i flussi a regime che intercorrono tra i diversi settori del sistema energetico per cercare di modificare la struttura dell'economia. In altri termini si ipotizza un cambiamento della struttura dell'economia guidata dai cambiamenti tecnologici del sistema energetico.

Circuito del Reddito

Fonte: IPI

Impatto economico delle spese di acquisto di elettrodomestici (2007-25) (MId€)

Remunerazione dei fattori	Impatto Scenario Tendenziale	Moltiplicatore Scenario Tendenziale	Impatto Scenario Policy	Moltiplicatore Scenario Policy
produttivi				
Lavoro	106,2	0,73	112,2	0,77
di cui Lavoro qualificato	45,1	0,31	48,0	0,33
di cui Lavoro non qualificato	61,1	0,42	64,2	0,44
Capitale	153,0	1,05	155,8	1,07
Valore aggiunto	259,2	1,78	268,0	1,84
Spese dei settori istituzionali				
Famiglie	226,9	1,56	236,6	1,62
Imprese	139,0	0,95	142,1	0,98
Governo	101,1	0,69	104,8	0,72
Istituzioni	467,1	3,21	483,4	3,32
Produzione nei settori di attività economica				
Agricoltura	22,7	0,16	23,6	0,16
Industria in senso stretto	368,6	2,53	362,1	2,49
Costruzioni	31,2	0,21	32,3	0,22
Servizi	373,3	2,56	395,7	2,72
Totale Produzione	795,8	5,47	813,7	5,59
Formazione del Capitale	72,3	0,5	74,9	0,51

Fonte: elaborazione ENEA

Conclusioni

Competitività economica, sostenibilità ambientale e sicurezza energetica sono gli obiettivi di politica energetica condivisi dai paesi membri dell'UE

Quali risposte dagli SCENARI ENEA?

- •È possibile sviluppare traiettorie del sistema energetico che garantiscano una riduzione delle emissioni climalteranti e della dipendenza energetica del Paese;
- •Individuano nel lungo periodo le tecnologie chiave nella mitigazione climatica (in linea con l'ETP 2010 dell'IEA);
- •Necessità di ulteriori misure ed investimenti in infrastrutture, tecnologie e ricerca per il raggiungimento di obiettivi di lungo periodo di abbattimento delle emissioni (-80% di GHG nel 2050 per i paesi industrializzati).
- •SAM: valutazione degli impatti socio-economici

Conclusioni

L'Ufficio Studi sta attualmente lavorando a migliorare:

- Integrazione TIMES-Italia con il modello del sistema elettrico dell'RSE
- Integrazione TIMES-Italia con le matrici SAM
- L' interazione del TIMES Italia con altre metodologie e modelli (p.e. modello GAINS per gli altri inquinanti atmosferici)

In prospettiva si sta anche lavorando a:

- Utilizzazione in parallelo di modelli di equilibrio economico (GTAP) per la valutazione d'impatto di politiche ambientali sulla competitività (collaborazioni con U. Roma3)
- Integrazioni/links con altre attività modellistiche sul clima in corso all'ENEA