The validity of stated risk estimates elicited via the Exchangeability Method: An experimental investigation of food safety perceptions

Simone Cerroni

Ph.D. Candidate, University of Trento and Junior Researcher, Fondazione eni Enrico Mattei (Milan).

Sandra Notaro

Researcher, University of Trento.

W. Douglass Shaw

Professor and Research Fellow of the Hazards Reduction and Recovery Center, Texas A&M University.

FEEM Seminars, Milano, January 12th, 2012

Aims - General

- Do perceived health risk related to food safety affect consumers' preferences for freepesticide apples?
- Elicitation of perceived health risks the presence of pesticide residue in apples produced in Trentino
- Why apples?

Aims - Methodological

- Investigate the validity of stated risk estimates elicited via EM
- Effect of monetary incentives on the validity of stated risks – real payments vs.
 hypothetical payments
- Effect of chained questions on the validity of stated risks – chained questions vs. unchained questions

Chained questions

Health Risk Elicitation

Qualitative:

➢How much do you concern about the presence of pesticide residue in apples?

Quantitative:

- Direct methods
 - Just ask a point estimate (in "chance" terms)
- Indirect methods
 - Lotteries, gambles etc.

Exchangeability method: Pros

- Not affected by source dependence bias
- Straightforward for respondents
- Elicit estimates of each subject's cumulative distribution function (CDF) of the random variable under study

Exchangeability method: Cons

Baillon, 2008; Abdellaoui et al., 2011

Case Study: Food Security

- the number of apples A that contains at least one pesticide residue in a sample of 100 apples in 2030
- the number of apples *R* that contains multiple pesticide residue in a sample of 100 apples in 2030
- estimates of 25th, 50th and 75th percentiles of each subject's CDF of **A** and **R**

Elicitation 50th percentile A_{1/2}(1)

The random variable is

A = the number of apples *A* containing **at least one** pesticide residue in a sample of 100 apples in 2030

The range of state space *A* is defined by the respondent:

$$A_0 = 60 \qquad \longrightarrow \qquad A_1 = 76$$

Elicitation 50th percentile A_{1/2} (2)

The state space is split in two prospects by using a benchmark value equal to

$$[A_0 + (A_0 - A_{100})/2] = 68$$

The first binary question is

$$A_{1/2} < 68 \text{ or } A_{1/2} \ge 68$$

until respondent's choices converge at a point estimate! For instance $A_{1/2} = 66$

Results - Stated Risk Estimates

Variable	Description	Mean Value
a _{1/4}	First Quartile	65.6
a _{1/2}	Median	69.2
a _{3/4}	Second Quartile	71.2
r _{1/4}	First Quartile	42.4
r _{1/2}	Median	44.9
r _{3/4}	Second Quartile	47.7

Considering that the number of apples containing **at least one** pesticide residue is **63/100** in **2009**

Considering that the number of apples containing **multiple** pesticide residue is **31/100** in **2009**

Italian Ministry of Health, 2010

Valid stated risks

"...a complete class of incompatible events E_1 , E_2 ,..., E_n being given, all the assignments of probability that attribute to p_1 , p_2 ,..., p_n any values whatever, which are non-negative and have a sum equal to unity, are admissible assignment: each of these evaluations corresponds to a coherent opinion, (...), and every individual is free to adopt that one of these opinions (...) which he feels".

(de Finetti, 1937)

Valid stated risks elicited via EM

Stated risk obeys to all axioms and theorems of probability theory if they satisfy the exchangeability assumption

The Median estimate is $A_{1/2} = 66$

Certainty Equivalent Game – Lottery 1

	Option A		Option B	
Question 1	×	You win 100€ if the number of apples containing at least one pesticide will be less than $A_{1/2} = 66$		1€
Question 2	×			25€
Question 3			×	49€
Question 4			*	51€
Question 5			×	75€
Question 6			*	99€

Certainty Equivalent Game – Lottery 2

	Option A		Option B	
Question 1	×			1€
Question 2	×	You win 100€ if the number of		25€
Question 3		apples containing at least onepesticide will begreater than or equal to $A_{1/2} = 66$	*	49€
Question 4			*	51€
Question 5			*	75€
Question 6			*	99€

Hypotheses: Exchangebility

At **sample** level: H_0 : median(CE_{L1}) = median(CE_{L2})

At individual level: $H_0: CE_{L1} = CE_{L2} = 49$

The Validity Rate is the number of stated risks which are valid

Factors influencing the validity

• Real monetary incentives?

Chained Questions?

• Joint effect?

Treatments

- Hypothetical incentives-chained questions (THC)
- 2. Hypothetical incentives-unchained questions (THU)
- 3. Real incentives-chained questions (TRC)
- 4. Real incentives-unchained questions (TRU)

Results – Sample Level

H_0 : median(CE_{L1}) = median(CE_{L2})

	Wilcoxon matched-pairs signed ranks test	Binomial sign test	
Treatment	Z	P>Z	
Real incentives- Chained questions	-3.713*	0.0027	
Real incentives- Unchained questions	-1.513	0.3049	
Hypothetical incentives- Chained questions	-1.283	0.0886	
Hypothetical incentives- Unchained questions	-3.005*	0.0000	

Results – Individual Level

$H_0: CE_{L1} = CE_{L2}$

Treatment	Observations	Valid Observations	Validity Rate (%)
Real incentives- Chained questions	192	52	26,26
Real incentives- Unchained questions	207	81	39,13
Hypothetical incentives- Chained questions	171	37	21,64
Hypothetical incentives- Unchained questions	144	43	29,86

Results - Valid vs. Not Valid

	Sample Level		Individ	ual Level
Variable	Valid	Not Valid	Valid	Not Valid
a _{1/4}	62.7	66.8	60.4	69.9
a _{1/2}	67.3	69.9	60.8	73.5
a _{3/4}	69.7	71.8	72.9	68.2
r _{1/4}	38.8	43.8	35.5	48.9
r _{1/2}	41.8	46.1	38.1	48.7
r _{3/4}	45.6	48.5	48.7	46.4

(1)

Results - Valid vs. Not Valid

Kolmogorov-Smirnov test Null Hypotheses Sample Level **Individual Level** H₀ **P-value P-value** 0.567 0.445 $a_{1/4, valid} = a_{1/4, notvalid}$ 0.664 0.059 $a_{1/2, valid} = a_{1/2, notvalid}$ 0.791 0.534 $a_{3/4, valid} = a_{3/4, notvalid}$ 0.018 0.444 $r_{1/4, valid} = r_{1/4, notvalid}$ 0.844 0.164 $r_{1/2, valid} = r_{1/2, notvalid}$ 0.755 0.676 $r_{3/4, valid} = r_{3/4, notvalid}$

(2)

Conclusions

- Respondents believe that the number of apples containing at least one pesticide residue will not significantly increase by the year 2030.
- They predict that the number of apples containing **multiple** residues will significantly increase by the year 2030.

Conclusions

- In general, the valid risk estimates are slightly smaller than the not valid ones.
- There is the risk of overestimating subjective perceptions!
- Warning: This result is not always statistically significant

Conclusions

- Real Incentives and Unchained Questions increase the EM performances in terms of validity rate
- At the best, only 39% of stated risk estimates can be considered valid!

What Next?

- Investigate the effect of risk perceptions on consumers' preferences for free-pesticide products
- Include stated risk estimates elicited via the EM in a Choice Experiment application
- Individual specific status quo alternatives by using a Pivot CE

Thank you!!!

ENVIR[®]CHANGE

http://www.envirochange.eu/

	2009	2030
At least one residue (A)	63	58
More than one residue (R)	31	43
One residue (O)	32	15

$$R_{2030} \le A_{2030}$$