

The Cost of Abating CO2 Emissions by Renewable Energy Incentives in Germany

Claudio Marcantonini and Denny Ellerman

EUI Annual Climate Policy Conference Florence, 2 October 2012

www.florence-school.eu>>LDP>>Climate Policy Research Unit

Outline

- I. Introduction
- II. The Relevant Costs
- III. Methodology
- IV. Results

Scope of the research

- Treat renewable energy as a climate instrument to reduce CO2 emissions
- Ignore energy security, green growth, jobs, other rationales
- > The question we try to answer is:

How much did it cost to reduce CO2 emissions using renewable energy incentives?

We analyse...

- What: wind and solar energy
- ➢ Where: Germany
 - Germany has a leading role in renewable expansion (wind capacity from 6GW in 2000 to 27GW in 2010; solar capacity from 6MW in 2000 to 17GW in 2010)
 - Very successful system of feed-in tariff (FIT) since 2000
- > When: years 2006-2010
 - *Ex-post* analysis
 - Annual CO2 abatement cost
- ➤ How:

CO2 abatement cost =

Total cost of renewable CO2 emission reduction

> We do not consider costs of transmission and distribution.

Outline

- I. Introduction
- II. The relevant costs
- III. Methodology
- IV. Results

Costs of renewable energy (1)

> *Remuneration* : Start with payments to RE generators

- No interest in engineering cost of production, profits, etc.
- Generators receive real claims on resources

ROBERT

SCHUMAN

European

University Institute

- May be fixed feed-in tariff, premium + electricity price, with or w/o tax other benefits
- Fuel Cost Savings: Must deduct cost of electricity for fixed feed-in tariff, as in Germany
 - Generators receive remuneration for a joint product: electricity and CO2 abatement
 - These cost savings are cost of the fossil fuel not used for generation
 - For our purposes, quantities shown by the model times appropriate fuel price

> Also a *carbon cost savings*

- CO2 emissions reduced times EUA price
- No attempt to take price interaction effect into account

Costs of renewable energy (2)

> Additional cost of the power system: *balancing cost*

ROBERT

SCHUMAN

CENTRE FOR

ADVANCED STUDIES

European

University

Institute

- Costs due to short term intermittency of renewable energy
- Short-term fluctuations need additional system balancing reserves with respect to conventional generations with an increase of cost for consumers
- > Additional cost of conventional generations: cycling cost
 - Costs due to intermittency of renewable generation
 - Increasing start-up cost
 - More inefficiency in convention power production because generations tend to work at lower capacity factor than what was designed for maximum efficiency
 - Higher maintenance costs
- > Additional savings in reduced capacity need: Capacity credit
 - Amount of conventional capacity that can be replaced by wind capacity (expressed as a % of the installed capacity), either existing or future
 - The inverse of 'back-up capacity'...what will <u>not</u> be needed

The merit order effect is mostly a transfer

Refers to reduction in wholesale electricity price resulting from RE injection

Consumer savings?

- Whether passed through to consumer depends on regulation
- Also, expectation effects in liberalized markets

Outline

- I. Introduction
- II. The Relevant Costs
- III. <u>Methodology</u>
- IV. Results

Remuneration to Wind

- In Germany, renewable energy receives a guaranteed feed-in tariff (FIT) for 20 years
- The level of FIT can be reduced after 5 years depending on the characteristics of the power plants
- More than half power plants receive the initial tariff payment over 20 years and more than three-quarters at least for 15 years
- > All the FIT are nominal

www.florence-school.eu>>LDP>>Climate Policy Research Unit

Annualized Economic Cost

- Actual FIT payments overstate cost in early years and understate it in later years
 - FIT diminishes in value over time both in nominal and real terms
 - FIT lasts for 20 years but average life-time of power plant is longer
- We estimate an equal annualized `mortgage' cost:
- 1. Determine the real annual remuneration of the installed capacity year by year for the life-time of the RE generating plants
 - 25 years life-time
 - 2% inflation
 - Same annual capacity factors for all wind power plants (18%)
 - 50% power plants receive the initial tariff for 20 years and 50% for 15 years
 - €50/MWh electricity price after expiration of FIT
- 2. Discount the annual remunerations and sum them to get an initial NPV and redistribute that sum over a 25-year mortgage using the same interest rate
 - fixed cost of capital of 7%
- 3. The total annualized economic cost is the sum of the mortgage payments for each in-service capacity cohort

European University Institute ROBERT SCHUMAN CENTRE FOR ADVANCED STUDIES

Loyola de Palacio Chair/Climate Policy Research Unit

Comparison with Actual FIT

Annualized wind economic cost

Wind		2006	2007	2008	2009	2010
Expenditure for FIT	[M€]	2988	3718	3731	3524	3412
Annualized economic cost	[M€]	2663	2851	3033	3268	3463
%		89%	77%	81%	93%	101%

Annualized solar economic cost

	2006	2007	2008	2009	2010
[M€]	1304	1746	2351	3307	5284
[M€]	895	1247	1740	2633	4087
	69%	71%	74%	80%	77%
	[M€] [M€]	2006 [M€] 1304 [M€] 895 69%	2006 2007 [M€] 1304 1746 [M€] 895 1247 69% 71%	2006 2007 2008 [M€] 1304 1746 2351 [M€] 895 1247 1740 69% 71% 74%	2006 2007 2008 2009 [M€] 1304 1746 2351 3307 [M€] 895 1247 1740 2633 69% 71% 74% 80%

Fuel cost saving

- > Estimated fuel cost saving are based on the model developed by Weigt et al.
- The model is a deterministic unit commitment model of the German electricity market calibrated to simulate the years 2006-2010 (actual prices, load, injections)
- The model calculates fuel cost in the OBS scenario, which corresponds to the actual observation, and in the No Wind (No Solar) scenarios at actual prices
- Fuel cost saving are given by the difference between the fuel costs in the No Wind (No Solar) and the OBS scenario

WIND			2006	2007	2008	2009	2010
Fuel cost	No Wind	[M€]	11726	12104	15718	11705	12433
Fuel cost	OBS	[M€]	10621	10622	13875	10423	11111
Fuel cost saving		[M€]	1207	1570	1931	1330	1350
SOLAR			2006	2007	2008	2009	2010
Fuel cost	No Solar	[M€]	10719	10739	14080	10649	11519
ruer cost	OBS	[M€]	10621	10622	13875	10423	11111
Fuel cost saving		[M€]	107	124	214	234	416

www.florence-school.eu>>LDP>>Climate Policy Research Unit

Fuel cost saving

> Fuel cost saving depends on the price of fossil fuels

Wind fuel cost saving and fossil fuel prices (€/MWh)

Additional start-up cost

- > They are calculated similarly to the fuel cost using the model by Weigt et al.
- Start up cost does not take into account all cycling costs

WIND			2006	2007	2008	2009	2010
Start up cost	No Wind	[M€]	178	169	217	197	203
Start up cost	OBS	[M€]	173	156	212	199	207
Additional start up cost		[M€]	-6	-14	-5	2	4
SOLAR			2006	2007	2008	2009	2010
Start up cost	No Solar	[M€]	175	159	213	209	207
Start up cost	OBS	[M€]	173	156	212	199	207
Additional start up cost		[M€]	-2	-3	-1	-10	0

Carbon cost saving

- > They are calculated similarly to the fuel cost using the model by Weigt et al.
- In all scenarios the EU ETS carbon price is exogenous and equal to the historical values
- The model does not take into consideration interactions between renewable policy support and the EU ETS.

Wind capacity benefit

- > 100 MW wind \neq 100 MW dispatchable capacity, nor 0 MW!
- There is <u>some</u> savings in capital cost plus the savings in fixed O&M cost of the conventional capacity that will not be built (or maintained) because of the increased wind capacity.
- > We assume a capacity credit of 7%
- > We assume that the savings are 70% coal and 30% gas for new capacity
- We suppose that capacity credit that comes from all wind capacity built before 2010 is realized in 2015.
- We redistribute these savings along the lifetime of the wind plants on-line in 2006-10

Additional wind balancing cost

➤ We assume €2 per MWh for the additional balancing cost due to wind penetration

		2006	2007	2008	2009	2010
Balancing cost per MWh of wind energy	[€/MWh]	2	2	2	2	2
Wind energy generated	[TWh]	30.6	39.6	40.5	37.5	35.8
Additional balancing cost	[M€]	61	79	81	75	72

Outline

- I. Introduction
- II. Costs and benefits of renewable energy
- III. Methodology
- IV. <u>Results</u>

Abatement cost

\mathbf{Wind}		2006	2007	2008	2009	2010	Average
Annualized economic cost	[M€]	2663	2851	3033	3268	3463	
Additional start up cost	[M€]	-6	-14	-5	2	4	
Additional balancing cost	[M€]	61	79	81	77	76	
Fuel cost saving	[M€]	-1207	-1570	-1931	-1330	-1350	
Carbon cost saving	[M€]	-382	-31	-443	-403	-401	
Capacity benefit	[M€]	-113	-125	-139	-155	-196	
Total cost	[M€]	1081	877	648	1416	1536	
CO2 emission reduction	[MtCO2]	22	26	32	30	27	
Abatement cost	[€/tCO2]	45	46	19	49	61	43
Solar		2006	2007	2008	2009	2010	Average
Annualized economic cost	[M€]	929	1294	1806	2731	4236	
Additional start up cost	[M€]	-2.4	-2.9	-0.7	-9.7	0.0	
Fuel cost saving	[M€]	-107	-124	-214	-234	-416	
Carbon cost saving	[M€]	-28	-1	-82	-65	-113	
Total cost	[M€]	791	1167	1509	2422	3707	
CO2 emission reduction	[MtCO2]	1.5	2	3.6	4.6	7.3	
Abatement cost	[€/tCO2]	527	598	414	524	510	505

Abatement cost

- There is one main cost: remuneration to RE generators. Additional start up cost and balancing cost, are insignificant in comparison
- There is one main cost saving: *fuel costs*. Carbon cost saving and capacity benefit are much lower than fuel cost saving, although not irrelevant

Total cost of wind per MWh of wind energy (€/MWh)

www.florence-school.eu>>LDP>>Climate Policy Research Unit

Abatement cost

Conclusions

- CO2 abatement costs of *wind* are relatively low (average 2006-2010 40€/tCO2)
- CO2 abatement costs of *solar* are very high (average 2006-2010 505€/tCO2)
- The cost of CO2 abated is almost entirely determined by the remuneration to RE generators less the fuel cost savings of the displaced generation.
- CO2 abatement cost can vary considerably from year to year due to variation of fossil fuels prices assuming constant remuneration
- ➢In Germany, low abatement cost in 2008 due to high fuel prices; higher in 2009-10 due to higher remuneration and lower fuel prices.