Incentives for environmental R&D

Mads Greaker (SSB) and Michael Hoel (UiO)

Presentation at EEA invited session: Climate Agreements and Climate Policy August 27, 2011

- A price on carbon emissions is the most important policy instrument to reduce carbon emissions
- Do we need other instruments in addition to a carbon tax (or quotas)?
- Yes if other market failures
- Markets for knowledge creation are imperfect
- But is there a difference between environmental R&D and other R&D?

Relationship with previous literature

Literature:

- comparison of taxes, quotas and other instruments when technology is endogenous (R&D and LbD)
- the issue of commitment (when is tax or quota set?)

Relationship with previous literature

Literature:

- comparison of taxes, quotas and other instruments when technology is endogenous (R&D and LbD)
- the issue of commitment (when is tax or quota set?)
- does lack of commitment undermine incentives for private sector R&D?
 - Laffont and Tirole (1996)
 - Montgomery and Smith (2007)
 - Ulph and Ulph (2009)

Relationship with previous literature

Literature:

- comparison of taxes, quotas and other instruments when technology is endogenous (R&D and LbD)
- the issue of commitment (when is tax or quota set?)
- does lack of commitment undermine incentives for private sector R&D?
 - Laffont and Tirole (1996)
 - Montgomery and Smith (2007)
 - Ulph and Ulph (2009)

Present paper:

- private sector R&D
- compares environmental R&D with marked goods R&D
- assumes environmental policy is set optimally but without commitment

Assumptions in the present analysis:

- competitive downstream sector
 - output is a regular market good
 - output is abatement

Assumptions in the present analysis:

- competitive downstream sector
 - output is a regular market good
 - output is abatement
- an upstream monopolistic R&D sector
- emission tax or quotas as the policy instrument
- no commitment

- consider a particular cost reducing innovation
- ealculate the innovator's future equilibrium revenue from this innovation
- Inigher revenue implies larger incentives for R&D

- consider a particular cost reducing innovation
- ealculate the innovator's future equilibrium revenue from this innovation
- Inigher revenue implies larger incentives for R&D
- ompare the revenue for two cases:
 - an ordinary market good
 - abatement

x p ℓ $v(x, \ell)$ B'(x) C(x, 0) $C(x, \ell)$ $C(x, \ell) + v(x, \ell)$

output/abatement output price/emission tax or quota price price of new technology per "something" revenue to innovator inverse demand/marginal benefit of abatement aggregate social cost function if technology were free actual aggregate social cost function actual aggregate private cost function

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The innovator chooses its price ℓ to maximize $v(x^0(\ell), \ell)$, giving the point M

Four possible decision sequences

p or x - R&D - ℓ - technology choice and abatement
R&D - p or x - ℓ - technology choice and abatement
R&D - ℓ - p or x - technology choice and abatement
R&D - ℓ & p or x - technology choice and abatement

Present analysis considers 2, 3 and 4

The tax is set after the licence fee

Regulator's response function is defined by the solution to $\max_x [B(x) - C(x, \ell)]$ giving $x^*(\ell)$ and $p^*(\ell)$ defined by $B'(x) = C_x(x, \ell)$

The tax is set after the licence fee

Regulator's response function is defined by the solution to $\max_x [B(x) - C(x, \ell)]$ giving $x^*(\ell)$ and $p^*(\ell)$ defined by $B'(x) = C_x(x, \ell)$

The innovator chooses its price ℓ to maximize $v(x^*(\ell), \ell)$, giving the point I.

The tax is set after the licence fee

Regulator's response function is defined by the solution to $\max_{x} [B(x) - C(x, \ell)]$ giving $x^{*}(\ell)$ and $p^{*}(\ell)$ defined by $B'(x) = C_{x}(x, \ell)$

The innovator chooses its price ℓ to maximize $v(x^*(\ell), \ell)$, giving the point I.

Proposition 1: If environmental policy (tax or quota) is set after the innovator sets the licence fee, incentives are higher for environmental R&D than for market goods R&D.

The tax is set simultaneously with the licence fee

Innovator's response function $\ell(p)$ is defined by the solution to $\max_{\ell} [v(x(p, \ell), \ell)]$, giving the curve $\ell(p)$

The tax is set simultaneously with the licence fee

Innovator's response function $\ell(p)$ is defined by the solution to $\max_{\ell} [v(x(p, \ell), \ell)]$, giving the curve $\ell(p)$

The tax is set simultaneously with the licence fee

Innovator's response function $\ell(p)$ is defined by the solution to $\max_{\ell} [v(x(p, \ell), \ell)]$, giving the curve $\ell(p)$

Proposition 2: If the emission tax is set simultaneously with the innovator setting the licence fee, incentives are higher for environmental R&D than for R&D for market goods if B" is sufficiently small.

The tax is set prior to the licence fee

Mads Greaker (SSB) and Michael Hoel (UiO) Environmental R&D

The tax is set prior to the licence fee

Using an example we show that

Proposition 3: If the emission tax is set before the innovator sets the licence fee, the sign of $v^R - v^0$ is ambiguous. For the case of B'' = 0, the sign of $v^R - v^0$ is equal to the sign of p - B'.

 If environmental policy is set after the licence fee, the outcome with quotas is identical to the outcome with taxes.

- If environmental policy is set after the licence fee, the outcome with quotas is identical to the outcome with taxes.
- If environmental policy is set simultaneously with or prior to the licence fee, the regulator's payoff B(x) − C(x, ℓ) is always at least as high with an optimal tax as with an optimal quota.

- If environmental policy is set after the licence fee, the outcome with quotas is identical to the outcome with taxes.
- If environmental policy is set simultaneously with or prior to the licence fee, the regulator's payoff B(x) − C(x, ℓ) is always at least as high with an optimal tax as with an optimal quota.
- If quotas nevertheless are used, we find the same ambiguity as with taxes.

All of the benefits from R&D captured by the innovator

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

Example:

- Fixed number of firms
- Each firm benefits from the new technology but to a different degree
- Innovator charges ℓ per unit of output/abatement and a fixed fee f_i from firm i:

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

Example:

- Fixed number of firms
- Each firm benefits from the new technology but to a different degree
- Innovator charges ℓ per unit of output/abatement and a fixed fee f_i from firm i:

$$egin{aligned} V &= \Sigma_i f_i + \ell x \ \Sigma_i f_i &= \max_x \left[p x - \mathcal{C}(x,0) - \ell x
ight] - \pi^{old}(p) \end{aligned}$$

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

Example:

- Fixed number of firms
- Each firm benefits from the new technology but to a different degree
- Innovator charges ℓ per unit of output/abatement and a fixed fee f_i from firm i:

$$\begin{split} V &= \Sigma_i f_i + \ell x \\ \Sigma_i f_i &= \max_x \left[px - C(x,0) - \ell x \right] - \pi^{old}(p) \\ \text{so } x \text{ is controlled by the innovator via its choice of } \ell \text{, and we get} \end{split}$$

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

Example:

- Fixed number of firms
- Each firm benefits from the new technology but to a different degree
- Innovator charges ℓ per unit of output/abatement and a fixed fee f_i from firm i:

$$V = \sum_{i} f_{i} + \ell x$$

$$\sum_{i} f_{i} = \max_{x} [px - C(x, 0) - \ell x] - \pi^{old}(p)$$

so x is controlled by the innovator via its choice of ℓ , and we get

$$V = \left\{\max_{x} [px - C(x, 0) - \ell x] - \pi^{old}(p)\right\} + \ell x = V(p, x)$$

Properties of the innovator's revenue function

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

Mads Greaker (SSB) and Michael Hoel (UiO) Environmental R&D

Properties of the innovator's revenue function

$$V(p, x) = [px - C(x, 0)] - \pi^{old}(p)$$

$$V_x(p, x) = p - C_x = 0 \text{ defines horizontal iso-} V$$

$$V_p(p, x) = x - x^{old}(p) = 0 \text{ defines vertical iso-} V$$

Mads Greaker (SSB) and Michael Hoel (UiO) Environmental R&D

Optimal policy

Regulator always wants $B'(x) = C_x(x, 0)$, defining x^* Tax first or simultaneously: Optimal tax is p^* , innovator obtains V^*

Market:

Innovator set its price parameters so x^0 is achieved, giving $V^0 > V^*$

Innovator's pricing first:

Innovator knows $x = x^*$ whatever it does, so it sets its price parameters so the equilibrium tax is p^l , giving $V^l > V^0 > V^*$

Innovator's pricing first:

Innovator knows $x = x^*$ whatever it does, so it sets its price parameters so the equilibrium tax is p^l , giving $V^l > V^0 > V^*$

Quotas:

Same as above, since innovator knows $x = x^*$ whatever it does

Are incentives for environmental R&D different than incentives for other R&D?

• yes, since the emission price (tax or quota price) is determined differently from the price for a market good

Are incentives for environmental R&D different than incentives for other R&D?

- yes, since the emission price (tax or quota price) is determined differently from the price for a market good
- whether R&D incentives for environmental R&D are weaker or stronger than they are for other R&D depends on
 - timing of environmental policy and pricing of the technology
 - whether the innovator through its price scheme is able to capture all the benefits of its innovation
 - whether taxes or quotas are used as the policy instrument

Are incentives for environmental R&D different than incentives for other R&D?

- yes, since the emission price (tax or quota price) is determined differently from the price for a market good
- whether R&D incentives for environmental R&D are weaker or stronger than they are for other R&D depends on
 - timing of environmental policy and pricing of the technology
 - whether the innovator through its price scheme is able to capture all the benefits of its innovation
 - whether taxes or quotas are used as the policy instrument
- if the environmental policy is set after the pricing of the technology, R&D incentives for environmental R&D are stronger than they are for other R&D