

Optimal spatial pricing and its impact on renewable generation in the British market

Matteo Di Castelnuovo

IEFE-FEEM Joint Seminar Series
Milan, 22nd September 2011

Agenda

- Introduction to spatial pricing
- The British "problem"
 - •The network issue
 - The renewable issue
- Research question and methodology
- Results and conclusions
- Appendix
 - Details about the model

Introduction to spatial pricing

Network Economics 101

- "Electricity must be treated as a commodity which can be traded taking into account its TIME- and SPACE-varying values and costs" (Schweppe et al 1988)
- "The problem of market design is not to invent clever new prices but to design a market that will reliably discover the same prices Economics has been suggesting since Adam Smith" (Stoft 2002)

Network Economics 101

- Transporting electricity has economic consequences in terms of
 - Network losses
 - Infrastructures (investment and O&M)
 - Energy Balance between demand and supply
 - System Balance (congestion management)
- •Marginal losses and opportunity cost of constraints are the two major component of MC pricing; capital costs need to be covered also.
- Vertical separation may lead to a loss of economies of scope (e.g. lack of coordination in network investments)
- Locational pricing may help recover this loss.

Network economics 101

Optimal spatial pricing = Locational marginal pricing (LMP), also known as nodal pricing

$$p_n = \mu_e \left(1 + \frac{\partial l}{\partial d_n} \right) + \sum_i \mu_i \frac{\partial z_i}{\partial d_n}$$
 (market clearing price)

 μ_e = shadow price of the energy balance constraint = marginal cost of generation at the reference bus μ_i = shadow price of the flow constraint for line i

EU transmission pricing

Source: ENTSO-E 2011

Why does spatial pricing matter?

	Sharing of network operator charges		Price	e signal	Are losses	Are system services	
	Generation	Load	Seasonal / time-of-day (1)	Location	tariffs charged by TSO?	included in the tariffs charged by TSO?	
Austria	15%	85%			Yes	Through a specific	
Austria	15%	85%	-	-		component to generators	
Belgium	0%	100%	xxx	-	Not included for grid >=150 kV	Tariff for ancillary services	
Bosnia and Herzegovina	0%	100%	-	-	No	No	
Bulgaria	0%	100%	-	-	Yes	Yes	
Croatia	0%	100%	х	-	Yes	Yes	
Czech Republic	0%	100%	-	-	Yes	Yes	
Denmark	4%	96%	-	-	Yes	Yes	
Estonia	0%	100%	X	-	Yes	Yes	
Finland	11%	89%	x	-	Yes	Yes	
France	2%	98%	-	-	Yes	Yes	
Germany	0%	100%	-	-	Yes	Yes	
Great Britain	27% TNUoS Tariff (2) 50% BSUoS Tariff (2)	73% TNUOS Tariff 50% BSUOS Tariff	xx	TNUoS - locational; BSUoS - non-locational	No, recovered in the energy market	Included in BSUoS Tariff	
Greece	0 % Use of system 0 % Uplift charges	100 % Use of system 100 % Uplift charges	x	-	No, recovered in the energy market	Included in Uplift charges	
Hungary	0%	100%	-	-	Yes	Tariff for ancillary service	
Ireland	25%	75%	-	Generation only	No, recovered in the energy market	Yes	
Italy	0%	100%	-	-	No, recovered in the energy market	Yes	
Latvia	0%	100%			Yes	Yes	
Lithuania	0%	100%	-	-	Yes	Yes	
Luxembourg	0%	100%	-	-	Yes	Yes	
FYROM	0%	100%	-	-	Yes	Yes	
Netherlands	0%	100%	-	-	Yes	Tariff for ancillary service	
Northern Ireland	25%	75%	XXX	-	No	Tariff for ancillary service	
Norway	35%	65%	XXX	Location	Yes	Yes	
-			(via losses)			1	
Poland	0,60%	99.4%	-	-	Yes	Yes	
Portugal	0%	100%	xx	-	No, included in energy price	No, included in energy pri	
Romania	20,69% use of system 0%	79,31% use of system 100%	-	6 G zones =6 G tariffs values 8 L zones =8 L	Yes	Tariff for ancillary service	
	system services	systems					
Serbia	0%	100%	x	-	Yes	Yes	
Slovak Rep.	0%	100%	-	-	Through a specific fee	Through a specific fee	
Slovenia	0%	100%	xx	-	Yes	Tariff for ancillary service	
Spain	6%	94%	XXX	-	No, included in energy price	No, included in energy price	
Sweden	25%	75%	-	Location	Yes	Yes	
Switzerland	0%	100%	-	-	By a separate tariff for losses	By separate tariffs for ancillary services	

Remarks:

⁽¹⁾ The "X" indicates time differentiation. With one "X", there is only one time differentiation ("day-night", "summer-winter" or another one). With two "X" (or more), there are two (or more) time differentiations.

⁽²⁾ TNUoS: Transmission Network Use of System; BSUoS=Balancing Services Use of System

The British "problem"

The network issue

GB Policy and Regulation

Climate Change

Security of Supply

Competitiveness

Household electricity bill in GB (2011)

Connection opportunities Locational (TNUoS) but not OPTIMAL pricing is applied

Source: NGC 2009

Congestion costs

Source: NGC 2009

Increasing level of constraint costs under BETTA (in f,m)

Source: Ofgem 2010

UK energy imbalance 2009/10 2015/2016

ACS Power Flow Pattern for 2009/10

NORTHERN

250 NORTHERN REPUBLIC OF IRELAND NETHERLANDS FRANCE

ACS Power Flow Pattern for 2015/16

Source: NGC 2009

The British "problem"

The renewable issue

Renewable energy consumption

≈ 7% in 2010

≈ 40% target in 2020

Cumulative installed capacity, by technology, as at end of year

Generation, by technology

Source: DECC 2011

Renewable energy production 2005 - 2009 and projection to 2020renewable energy consumption (TWh)

Estimated levelised cost ranges for electricity technologies in 2010

Wind potential capacity (GW)

Source: CCC 2009

Wind intermittency

Research question and methodology

Research question

- •Can the objectives of a locationally efficient network policy and those of a renewable policy be achieved simultaneously?
- Sub-questions
 - •Given the adoption of optimal spatial pricing, how does this affect the level of production from renewable energy (wind in particular)?
 - •How can we develop a more sophisticated approach to renewable policy which takes into account these trade-offs?

Methodology

- A non-linear optimization model, combining Economics and Electrical Engineering principles, which compares social welfare in two different "worlds" in 2015, under the constraint of a renewable target:
 - Uniform pricing (e.g. most European markets)
 - •LMP (e.g. a few US markets, New Zealand, etc.)

Methodology

LMP model

$$\max_{\underline{d},\underline{g}} \sum_{n} \int_{0}^{d_{n}^{*}} p_{n}(d_{n}) dd_{n} - \sum_{n} \sum_{k} tc_{n,k}$$

Subject to

$$\sum_{n}\sum_{k}g_{n,k}=\sum_{n}d_{n}+l$$

(energy balance)

$$g_{n,k} \leq g_{n,k}^{\max}$$

for any *n*, *k*

(max individual generation)

$$z_i \leq z_i^{\max}$$

for each line i (max power flow)

Key results and conclusions

Key results

Energy results in 2015 (TWh)

UNI									
Summary of annual results		Total demand (TWh)	Total generation (TWh)	Total wind energy (TWh)	Total wind energy (% of total generation)				
Central elasticity	-0.25	370.28	375.89	33.04	8.79%				
High elasticity	-0.50	383.12	389.05	33.04	8.49%				
			LMP						
Summary of annual results		Total demand (TWh)	Total generation (TWh)	Total wind energy (TWh)	Total wind energy (% of total generation)				
Central elasticity	-0.25	378.45	384.12	33.04	8.60%				
High elasticity	-0.50	394.19	400.03	33.04	8.26%				
Difference between LMP and UNI		% Difference in demand	% Difference in generation	% Difference in wind energy					
Central elasticity	-0.25	2.21%	2.19%	0.00%					
High elasticity	-0.50	2.89%	2.82%	0.00%					

Congestion on transmission lines under LMP and UNI in 2015

Uniform marginal pricing

Locational marginal pricing

Key results

Key results

Welfare results in 2015 (£million)

			2008	2015					
Difference in welfare between LMP and UNI using different T/G (in £ million, 2008 money)			T/G=81%	T/G=81%		T/G=86%	T/G=88%	T/G=96%	
Central elasticity -0.25			N/A	2,470 128		31	9		
			Difference i cial welfare	consumer		ımer	% Difference in cost of dispatch		
Central elasticity	-0.25	0.19%			4.31%		3.35%		
High elasticity	-0.50	0.36%			5.59%		4.22%		
		Difference i nerators' pr			erence in profit	% Difference in average price			
Central elasticity	-0.25		-31.419	6	-18	3.63%	-8.7	' 9%	
High elasticity	-0.50		-24.57%	6	-12	2.72%	-6.2	26%	

Key results

Price results in 2015 (£/MWh)

UNI vs. LMP (Elasticity = -0.25)

Average prices (£/MWh) under LMP in 2015 (demand elasticity -0.25)

Key results

Conclusions

- •The model results indicate that the objectives of a locationally efficient network policy and those of a renewable policy may be hard to achieve simultaneously
 - Total profits for wind are 19% lower under LMP
 - •As uniform pricing model is "cleverer" than the real world (two-stage process), welfare differences would be greater.
- •However this does not mean that a more sophisticated renewable policy could not address such trade-offs
 - Higher LMPs for off-shore wind farms
 - •Higher carbon price.

Appendix

Details about the model

GB Electricity Market (1)

Theory

Adapted from Schweppe et al. (1988)

$$\max_{\underline{d},\underline{g}} \sum_{n} \int_{0}^{d_{n}^{*}} p_{n}(d_{n}) dd_{n} - \sum_{n} \sum_{k} tc_{n,k}$$

Subject to

$$\sum_{n} \sum_{k} g_{n,k} = \sum_{n} d_n + l$$

(energy balance)

$$g_{n,k} \leq g_{n,k}^{\max}$$

for any n, k

(max individual generation)

$$z_i \leq z_i^{\max}$$

for each line i

(max power flow)

ELMAR 16-15

(A)=(B)-(C) Objective function - Max social welfare (in £)		(B) Total consumer benefit (in £)	(C) Total cost of dispatch (in £)	(D) Total consumer surplus (in £)	(E) Total generators' profit (in £)	(F)=(G)-(E)-(C) Total grid profit (in £)	(G) Total revenue (in £)	Check (A)=(D)+(E) +(F)	Nr negative profits	Demand- weighted average price (£/MWh)
11,056,440	4,953,960	13,527,524	2,471,084	9,050,372	1,175,672	830,396	4,477,152	11,056,440	0	72.38
	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
Prices (£/MWh)	52.57	53.07	54.04	54.04	54.70	55.07	57.64	58.89	37.71	0
O m - min	Dem	and and Generation	input		Demand elast	ticity scenario		Demand reference price (£/MWh)		
Scenarios	Winter Annual peak 0.75				-0.	.25		73.00		
Demand nodes	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
Ref D and Max G	566.27	540.12	0	660.05	1142.73	3060.75	3284.75	7732.67	6123.04	0
Credible upper bounds for D* and G*	679.5249727	648.1456348	0	792.0577708	1371.275854	3672.902851	3941.698567	9279.207831	7347.653773	0
	1	1	0	1	1	1	1	1	1	0
Choice variables										
D* and G*	605.89	576.99	0	702.91	1214.36	3248.69	3457.59	8106.27	6863.00	0
Change initial values D* and G*	D*=1,0	G*=1,0		D*=Ref D	G*=Max G					
Consumer benefit and cost of dispatch (in £)	126,501	120,610	0	147,273	254,831	682,339	730,650	1,718,093	1,381,908	0
Consumor auralus										
Consumer surplus and generators' profit (in £)	94,648	89,990	0	109,291	188,409	503,433	531,371	1,240,697	1,123,087	0
Choice variables	605.89	576.99	0	702.91	1214.36	3248.69	3457.59	8106.27	6863.00	0
Generation nodal injections										
Net nodal injections (=G-D)	897.86	731.47	0.00	-702.91	895.24	1,105.40	-669.49	-414.87	6,397.53	0.00

Inputs

GB demand data in 2015 (MWh)

Inputs

GB Installed Generation Capacity in 2015

Inputs

Total Transmission connected Capacity in "Gone Green"

Generation Type	Capacity (GW)					
	2010/11	2020/21				
Coal	28.2	14.5				
Coal (CCS)	0.0	0.6				
Nuclear	10.8	11.2				
Gas	31.9	34.7				
Oil	3.4	0.0				
Pumped Storage	2.7	2.7				
Wind	3.8	26.8				
Interconnectors	3.3	5.8				
Hydro	1.1	1.1				
Biomass	0.0	1.6				
Marine	0.0	1.4				
Total	85.3	100.5				

Source: NGC 2011

Contributions

- Gaps in the literature
 - Renewable + Network policy
- Improved engineering-economic model
 - DCLF radial network
 - Demand elasticity
- Enhanced demand modelling
 - Theory (consumer behaviour)
 - Practice (energy consumption)
- Adding the renewable dimension into a welfare economic model with spatial pricing
- Several open issues in the current debate

Grazie per l'attenzione!

matteo.dicastelnuovo@unibocconi.it