STOCHASTIC CAPACITY EXPANSION MODELS :

Risk exposure and Good-deal valuation

Gauthier de Maere

Supervisor : Y. Smeers

School of Engineering and CORE Université catholique de Louvain, Belgium

June 23, 2011 - FEEM

< ≣⇒ 1

Electricity markets : Investment models

Generation capacity expansion models have a long tradition in the power industry

- Models that optimally select the timing and the level of investment over a time horizon
- ▶ Well adapted for the regulated monopoly industry (from the 50^{ties} in EdF)
 - Risk was largely passed to the consumer through average cost pricing
- Still very popular after the restructuring of the sector
 - Interpretable as equilibrium in a competitive environment
 - What about the risk ?

Those models have been adapted to stochastic programming in order to accommodate wide ranges of uncertainties

- Estimation of the margin profit distribution of power plants
- Risk averse formulation using the good-deal risk measure

Outline

Generation Capacity Expansion Models

- 1. Introduction: optimization, equilibrium and risk
- 2. Estimation of the distribution of the margin profit
- 3. Risk averse formulation : good-deal risk measure

Outline

Generation Capacity Expansion Models

- 1. Introduction: optimization, equilibrium and risk
- $2. \ \mbox{Estimation}$ of the distribution of the margin profit
- $3. \ {\rm Risk}$ averse formulation : good-deal risk measure

A basic capacity expansion model

- Two stages : invest in t = 0, operate in t = 1
- Price insensitive demand
- Invest x(k) in K technologies (coal, CCGT, ...)
- Operate them at $y(k,\ell)$ in time segment ℓ
- Satisfy or curtail the demand $d(\ell)$

A deterministic optimization problem:

$$\begin{split} \min_{x \ge 0} & \sum_{k=1}^{K} I(k) x(k) + Q(x) \\ & Q(x) = & \min_{y,z} \sum_{\ell=1}^{L} \tau(\ell) \left(\sum_{k=1}^{K} c(k) y(k,\ell) + PCz(\ell) \right) \\ & \text{s.t.} & 0 \le y(k,\ell) \le x(k) \\ & 0 \le \sum_{k=1}^{K} y(k,\ell) + z(\ell) - d(\ell) \\ \end{split}$$

Parameters and units

- I(k) Investment cost (annuity) of technology k [EUR/MWyear]
- c(k) Operating cost of technology k [EUR/MWh]
- PC Value of Loss Load or price cap [EUR/MWh]
- $d(\ell)$ Demand level [MW]
- $au(\ell)$ Number of hours in time segment ℓ

 $\pi(\ell)$ Electricity price in time segment ℓ [EUR/MWh] $\mu(k,\ell)$ Gross margin of technology k in time segment ℓ [EUR/MWh]

From optimization to equilibrium

Equivalent to a perfect competitive equilibrium in a economy where

N agents maximize their profit ($\nu = 1, ...; N$ - given $\pi(\ell)$):

$$\max_{\substack{x_{\nu} \ge 0}} \sum_{\substack{k=1 \ \ell=1}}^{K} \sum_{\ell=1}^{L} \tau(\ell) \Big(\pi(\ell) - c(k) \Big) y_{\nu}(k,\ell) - I(k) x_{\nu}(k)$$

s.t. $0 \le y_{\nu}(k,\ell) \le x_{\nu}(k)$

Market clearing conditions (with price cap) :

$$0 \le \pi(\ell) \quad \perp \quad \sum_{\nu=1}^{N} \sum_{k=1}^{K} y_{\nu}(k,\ell) + z(k,\ell) - d(\ell) \ge 0$$
$$0 \le z(\ell) \quad \perp \quad PC - \pi(\ell) \ge 0$$

Investment criterion

$$0 \le x(k) \perp I(k) - \sum_{\ell=1}^{L} \tau(\ell) \mu(k,\ell) \ge 0$$

Introducing risk

- Uncertainties : demand, operating costs, but also regulatory risk
- Invest in t = 0 before the actual realization of parameters
- (Ω, P) a probability space where :
 - Scenario $\omega \in \Omega$: probability $p(\omega)$ and corresponding realization of :

$$(c(k,\omega), d(\ell,\omega), PC(\omega))$$

A stochastic optimization problem:

Stochastic equilibrium

- Also amenable to a perfectly competitive stochastic equilibrium
- The dual variables $(\pi(\ell,\omega),\mu(k,\ell,\omega))$ are now contingent on ω
- The investment criterion becomes a NPV

$$0 \le x(k) \perp I(k) - \mathbb{E}_P \Big[\sum_{\ell=1}^L \tau(\ell) \mu(k, \ell, \omega) \Big] \ge 0$$

- Interpretation :
 - Agents are risk neutral / there exist Arrow-Debreu securities (not represented explicitly)
 - All agents in the economy value their investment according to a common exogenous discount factor (CAPM)

Restrictions and extensions

Extensions :

- Multi-period problem
- Price sensitive demand (welfare optimization)
- Storage possibilities, electric grid,...
- Emissions constraints (CO₂,NOx,...)

Restrictions : Some feature are amenable to optimization but not to equilibrium

- Unit commitment characteristics (MIP)

Outline

Generation Capacity Expansion Models

- 1. Introduction: optimization, equilibrium and risk
- 2. Estimation of the distribution of the margin profit
- 3. Risk averse formulation : good-deal risk measure

work done with Professor A. Shapiro, Georgia Tech.

Motivations:

- Investors want to have the best estimation of the distribution of the gross margin
 - compute statistics, measuring the risk (VaR), evaluating hedging strategies,...
- When the risk factors have continuous distribution, the solution is obtained by sampling methods

The sample size is limited : one wants to refine it for the profit distribution

Sampling

W2

W4

WN

t=1

Nonanticipativity constraints

A Stochastic Program can be formulated as

$$\min_{\mathbf{x} \in \mathfrak{L}} \mathbb{E}[\sum_{k=1}^{K} I(k) \mathbf{x}(k, \omega) + Q(\mathbf{x}(\omega), \omega)]$$

where $\ensuremath{\mathfrak{L}}$ is the set of nonanticipativity constraints

$$\mathfrak{L} := \{ \mathbf{x} \in \mathfrak{X} : \mathbf{x}(\omega) = x \}$$

The associated Lagrange multipliers :

$$\lambda(k,\omega) = \sum_{\ell=1}^L \tau(\ell) \mu(k,\ell,\omega) - I(k)$$

λ(k,ω) is net margin of technology k for a given realization of ω

Estimating the distribution

We propose a sampling method :

- 1. Solve the initial stochastic problem (SAA method check quality)
 - Optimal investment $\Rightarrow \hat{x}(k)$
- 2. Sample again the parameters (large): $\omega_1, \omega_2, ..., \omega_M$
- 3. For each sample ω_j , and given $\hat{x}(k)$, compute

$$\lambda(k, \omega_j) = \sum_{\ell=1}^{L} \tau(\ell) \mu(k, \ell, \omega_j) - I(k)$$

4. Obtain the histogram of the distribution

Illustrative example

- 4 technologies: Nuclear, Coal, CCGT, OCGT
- Uncertainties on the load : "Wind" and "Growth"
- Sample 30.000 scenarios for the profit distribution
- Badly represent the reality of wind (in progress)

	\hat{x} [MW] "Wind"	\hat{x} [MW] "Growth"
Nuclear	4797.7	5048.1
Coal	0.0	0.0
CCGT	4811.0	4269.5
OCGT	897.4	659.46

Demand

Illustrative example

- Risk and capital requirement :

Gross Profit	"Growth"	"Wind"
Nuclear : - CVaR _{30%}	2.1%	8.8%
- StDev	35.22	73.78
CCGT : - CVaR _{30%}	9%	53.5%
- StDev	33.6	86.82
OCGT : - CVaR _{30%}	13.4%	81.3%
- StDev	31.14	78.74

Histogram for a Nuclear unit [eur/MW] ("Wind" case)

- $\diamond~$ Capital requirement \equiv Capital needed for accepting the risk
- Measure by a CVaR
- Expressed in [%] of I(k)

Illustration of the CVaR

Outline

Generation Capacity Expansion Models

- 1. Introduction: optimization, equilibrium and risk
- $2. \ \mbox{Estimation}$ of the distribution of the margin profit
- 3. Risk averse formulation : good-deal risk measure

work done with A. Ehrenmann, CEEME, Gdf-Suez E. Druenne, CEEME, Gdf-Suez

Motivations

- Power plants have quite different risk exposures
- Deterministic discount factor does not capture well the risk
- The CAPM or APT methodologies are difficult to apply
 - The market portfolio badly spans the systematic risks
 - More fundamentally : what are the systematic / idiosyncratic risks for a power company?
 - A. Ehrenmann and Y. Smeers, 2011: "Stochastic Equilibrium Models for Generation Capacity Expansion"

- Rather propose an approach based on risk measure
 - Risk averse generation capacity expansion models
 - Focus on the good-deal (introduced by Cochrane and Saa-Requejo)

Risk measures in short

Goals :

- Quantification of how risk affects the value of a portfolio
- Defined as **capital requirement**: minimal amount of capital which when added makes the position acceptable.
- For a random profit $Z,\ \rho(Z)+Z$ is acceptable
 - e.g: Mean-Variance, Exponential utility, CVaR,...

Received a lot of attention in the past decade:

Desirable properties : axiom of coherence (by Artzner et al.)
Theorem Any coherent risk measure has a dual representation :

$$\rho(Z) = \sup_{Q \in \mathcal{M}} \left\{ \mathbb{E}_Q[-Z] \right\}$$

Linked to ambiguity in economics

Risk-averse stochastic programming

Risk averse capacity expansion problem

$$\min_{x \ge 0} \sum_{k=1}^{K} I(k)x(k) + \rho(-Q(x,\omega))$$

- Invest in a safe way to avoid large costs (unsatisfied demand, technology spillover,...)
- Interpretation :
 - A social planner (least cost for society)
 - An equilibrium in a complete market ? (work in progress)

D. Ralph and Y. Smeers, 2010: "Pricing risk under risk measures: an introduction to stochastic-endogenous equilibria"

Initial step to a full equilibrium model with risk averse investors

The good-deal risk measure (1)

The good-deal risk measure (from Cochrane and Saá-Requejo,2000):

0.04 -

: I

Good-deal risk measure

- A coherent risk measure in the sense of Artzner et al. (1999)
- Lead to a "risk-neutral" probability \rightarrow no arbitrage
- Incorporate the price of related risk factor $f \rightarrow \mathsf{CAPM}$, APT
- Parameter h is linked to the admissible Sharpe ratio

The good-deal risk measure (2)

Problem The Lagrangian dual formulation of the good-deal :

$$\rho^{\text{GD}}(Z) = \inf_{\mathbf{w},\eta} A\left(\mathbb{E}_{P}[\eta^{2}]\right)^{\frac{1}{2}} - \sum_{i} f_{0}(i)\mathbf{w}(i)$$
$$\eta(\omega) \ge \sum_{i} f_{1}(i,\omega)\mathbf{w}(i) - Z(\omega)$$

Interpretation : replicating portfolio in an incomplete market

- Optimality conditions give

$$\eta(\omega) = \max\left(0, \sum_{i} f_1(i, \omega) \mathbf{w}(i) - Z(\omega)\right)$$

- η mesures the hedge, is called a *regret*
- When $A \to \infty$: super-hedge (the value of Z is the value of a worser portfolio)

Risk-averse stochastic capacity expansion

Using the dual formulation of the good-deal measure :

$$\begin{split} \min_{\mathbf{u},\mathbf{w},\eta} \quad & \sum_{k=1}^{K} I(k) x(k) + \mathbf{w}_{0}(i) + A \mathbb{E}[\eta(\omega)^{2}]^{\frac{1}{2}} \\ \text{s.t.} \quad & x(k) \geq 0 \\ & 0 \leq y(k,\ell,\omega) \leq x(k) \\ & \sum_{k \in K} y_{\ell}(k,\ell,\omega) + z_{\ell}(\ell,\omega) - d(\ell,\omega) \geq 0 \\ & (R_{f})\mathbf{w} + \eta(\omega) \geq \sum_{\ell=1}^{L} \tau_{\ell} \left(\sum_{k=1}^{K} c(k,\omega) y(k,\ell,\omega) + \operatorname{PC} z_{\ell}(\ell,\omega) \right) \end{split}$$

- Second Order Cone Program (efficient solver)
- Extension to multistage problems : time consistent
- Current work: investments that mitigate the risk due to the electrical grid, high learning rates and technological acceptance

Illustrative example

- Three stages example: 1/25/125
- Three technologies: coal, CCGT, OCGT
- 5 years time period and 2 risk factors

α :	- 5%	0%	5%	10%	15 %
Probability	0.1	0.15	0.30	0.25	0.2

Demand Growth

β:	0%	12%	24%	36%	48 %
Probability	0.1	0.4	0.2	0.25	0.1

Gas price growth

- PC=500 eur/Mwh
- $R^f = 1.02$ (for computing annual cost)
- $A^2 = 1.5$ (A² = 1 + Sharpe ratio²)

Illustrative example : investement

Investment [GW]	Coal	CCGT	OCGT
$x_0(k,\omega_0)$	66	3	23
$\mathbb{E}[x_1(k,\omega_1) \mid \mathcal{F}_0]$	4.4	0.6	1.4

Impact of risk aversion:

	A=1.05	A=1.22	A=2.23
Coal	63	65	69
CCGT	6	3	0
OCGT	19	23	23

Initial investment (t = 0) for different Sharpe ratio