Empirical Analysis

Conclusion

Disaster Risk, Social Vulnerability and Economic Development

Patrick S. Ward

International Center for Climate Governance

December 12, 2011

Introduction

- Disasters represent a significant threat to humankind because they have the potential to have significant and sudden impacts on societies.
- Climate change is expected to increase the frequency and intensity of many types of climate-related disasters.

Since 1960 there have been:

8,035 climate-related disasters reported

3.5 million deaths associated to climate-related disasters

Empirical Analysis 000000 000 00000 Conclusion

Introduction

- Disasters represent a significant threat to humankind because they have the potential to have significant and sudden impacts on societies.
- Climate change is expected to increase the frequency and intensity of many types of climate-related disasters.

Since 1960 there have been: 8,035 climate-related disasters reported

3.5 million deaths associated to climate-related disasters

6.1 billion persons affected by climate-related disasters

Introduction

- Disasters represent a significant threat to humankind because they have the potential to have significant and sudden impacts on societies.
- Climate change is expected to increase the frequency and intensity of many types of climate-related disasters.

Since 1960 there have been:

8,035 climate-related disasters reported

3.5 million deaths associated to climate-related disasters

6.1 billion persons affected by climate-related disasters

Introduction

- Disasters represent a significant threat to humankind because they have the potential to have significant and sudden impacts on societies.
- Climate change is expected to increase the frequency and intensity of many types of climate-related disasters.

Since 1960 there have been:

8,035 climate-related disasters reported

3.5 million deaths associated to climate-related disasters

6.1 billion persons affected by climate-related disasters

Empirical Analysis 000000 000 00000

Climate Disasters Affect All Regions of the World

Conclusion

Disasters: Natural or Un-Natural?

- World Bank publication (2010) Gol
- Are disasters natural or un-natural?
 - There is a perceived lack of control over these events
 - "Acts of God"
 - While there are natural events that precipitate disasters, the death and destruction result from human acts of omission and commission

Distinction Between Hazards and Disasters

Hazard

"extreme natural event which may affect different places singly or in combination...at different times."

Disaster

"when a significant number of vulnerable people experience a hazard and suffer severe damage and/or disruption of their livelihood system in such a way that recovery is unlikely without external aid."

Source: Blaikie et al. (1994)

Distinction Between Hazards and Disasters

Hazard

"extreme natural event which may affect different places singly or in combination...at different times."

Disaster

"when a significant number of vulnerable people experience a hazard and suffer severe damage and/or disruption of their livelihood system in such a way that recovery is unlikely without external aid."

Source: Blaikie et al. (1994)

Distinction Between Hazards and Disasters

Hazard

"extreme natural event which may affect different places singly or in combination...at different times."

Disaster

"when a significant number of vulnerable people experience a hazard and suffer severe damage and/or disruption of their livelihood system in such a way that recovery is unlikely without external aid."

Source: Blaikie et al. (1994)

Center for the Research on the Epidemiology of Disasters (CRED) definition:

- "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹
- Criteria for characterizing an event as a disaster:²
 - 10 or more people reported killed
 - 100 or more people reported affected
 - Declaration of a state of emergency
 - A call for international assistance

¹http://www.emdat.be/glossary

²http://www.emdat.be/criteria-and-definition

Center for the Research on the Epidemiology of Disasters (CRED) definition:

- "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹
- Criteria for characterizing an event as a disaster:²
 - 10 or more people reported killed
 - 100 or more people reported affected
 - Declaration of a state of emergency
 - A call for international assistance

Center for the Research on the Epidemiology of Disasters (CRED) definition:

• "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹

• Criteria for characterizing an event as a disaster:²

- 10 or more people reported killed
- 2 100 or more people reported affected
- Output Declaration of a state of emergency
- A call for international assistance

Center for the Research on the Epidemiology of Disasters (CRED) definition:

• "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹

• Criteria for characterizing an event as a disaster:²

- 10 or more people reported killed
- 2 100 or more people reported affected
- Output Declaration of a state of emergency
- A call for international assistance

Center for the Research on the Epidemiology of Disasters (CRED) definition:

- "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹
- Criteria for characterizing an event as a disaster:²
 - 10 or more people reported killed
 - 2 100 or more people reported affected
 - Oeclaration of a state of emergency
 - A call for international assistance

Center for the Research on the Epidemiology of Disasters (CRED) definition:

- "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹
- Criteria for characterizing an event as a disaster:²
 - 10 or more people reported killed
 - 2 100 or more people reported affected
 - Occuration of a state of emergency
 - A call for international assistance

¹http://www.emdat.be/glossary

²http://www.emdat.be/criteria-and-definition

Center for the Research on the Epidemiology of Disasters (CRED) definition:

- "A situation or event which overwhelms local capacity necessitating a request to national or international level for external assistance."¹
- Criteria for characterizing an event as a disaster:²
 - 10 or more people reported killed
 - 2 100 or more people reported affected
 - Output Declaration of a state of emergency
 - A call for international assistance

¹http://www.emdat.be/glossary

²http://www.emdat.be/criteria-and-definition

Focus on Climate-Related Disasters

We focus on climate-related disasters in this paper:

- Droughts
- Extreme Temperatures (both extreme heat and extreme cold)
- Floods
- Wet mass movements (e.g., landslides or mudslides)
- Storms (both tropical storms and localized convective storms)

Focus on Climate-Related Disasters

We focus on climate-related disasters in this paper:

- Droughts
- Extreme Temperatures (both extreme heat and extreme cold)
- Floods
- Wet mass movements (e.g., landslides or mudslides)
- Storms (both tropical storms and localized convective storms)

Conclusion

Research Objectives

Our purpose in this paper is twofold:

Objective #1

Consider the "un-natural" determinants of disasters: What factors contribute to a hazard becoming a disaster?

Objective #2

Consider the effects of socio-economic factors on social vulnerability: How do social, economic, and political factors affect social outcomes in the event of a disaster?

Conclusion

Research Objectives

Our purpose in this paper is twofold: Objective #1

Consider the "un-natural" determinants of disasters: What factors contribute to a hazard becoming a disaster?

Objective #2

Consider the effects of socio-economic factors on social vulnerability: How do social, economic, and political factors affect social outcomes in the event of a disaster?

Conclusion

Research Objectives

Our purpose in this paper is twofold: Objective #1

Consider the "un-natural" determinants of disasters: What factors contribute to a hazard becoming a disaster?

Objective #2

Consider the effects of socio-economic factors on social vulnerability: How do social, economic, and political factors affect social outcomes in the event of a disaster?

Empirical Analysis 000000 000 00000

Disasters Have Been Reported with Greater Frequency

Conclusion

Empirical Analysis 000000 000 00000

Disasters Have Been Reported with Greater Frequency

Conclusion

Empirical Analysis

Conclusion

Declining Mortality, Rising Morbidity

Increasing Disaster Frequency

- Unreliable historical data (may understate true disaster frequencies from the past)
- Changing national boundaries (e.g., break-ups of the Soviet Union and Yugoslavia)
- Systematic variations in reliability
 - Improved transportation infrastructure
 - Improved telecommunication infrastructure
 - Increased international cooperation
 - Political regime switching
- Changing climate

Increasing Disaster Frequency

- Unreliable historical data (may understate true disaster frequencies from the past)
- Changing national boundaries (e.g., break-ups of the Soviet Union and Yugoslavia)
- Systematic variations in reliability
 - Improved transportation infrastructure
 - Improved telecommunication infrastructure
 - Increased international cooperation
 - Political regime switching
- Changing climate

Increasing Disaster Frequency

- Unreliable historical data (may understate true disaster frequencies from the past)
- Changing national boundaries (e.g., break-ups of the Soviet Union and Yugoslavia)
- Systematic variations in reliability
 - Improved transportation infrastructure
 - Improved telecommunication infrastructure
 - Increased international cooperation
 - Political regime switching
- Changing climate

Increasing Disaster Frequency

What explains the increasing frequency of climate disasters?

- Unreliable historical data (may understate true disaster frequencies from the past)
- Changing national boundaries (e.g., break-ups of the Soviet Union and Yugoslavia)
- Systematic variations in reliability
 - Improved transportation infrastructure
 - Improved telecommunication infrastructure
 - Increased international cooperation
 - Political regime switching

Changing climate

Increasing Disaster Frequency

- Unreliable historical data (may understate true disaster frequencies from the past)
- Changing national boundaries (e.g., break-ups of the Soviet Union and Yugoslavia)
- Systematic variations in reliability
 - Improved transportation infrastructure
 - Improved telecommunication infrastructure
 - Increased international cooperation
 - Political regime switching
- Changing climate

Trends in Social Outcomes of Disasters

What explains the declining number of deaths and the rising number of persons affected?

• Declining death tolls:

- Advances in physical infrastructure
- Advances in medical technology

• Rising numbers of persons affected:

- Lower mortality
- Population growth (e.g., Strömberg, 2007)
- Increasing disaster frequency

Trends in Social Outcomes of Disasters

What explains the declining number of deaths and the rising number of persons affected?

- Declining death tolls:
 - Advances in physical infrastructure
 - Advances in medical technology
- Rising numbers of persons affected:
 - Lower mortality
 - Population growth (e.g., Strömberg, 2007)
 - Increasing disaster frequency

Trends in Social Outcomes of Disasters

What explains the declining number of deaths and the rising number of persons affected?

- Declining death tolls:
 - Advances in physical infrastructure
 - Advances in medical technology
- Rising numbers of persons affected:
 - Lower mortality
 - Population growth (e.g., Strömberg, 2007)
 - Increasing disaster frequency

Explaining Disaster Occurrence

Disasters arise from the intersection of natural hazards and vulnerable societies.

Disasters:

$$D_{jt}^* = f(H_{jt}^*(E_j), X_{jt})$$

• D_{it}^* : Disaster

- Unobserved
- Observe $D_{jt} = \begin{cases} 1 & \text{if } D_{jt}^* \ge \underline{D} \\ 0 & \text{Otherwise} \end{cases}$
- *D* is as defined by CRED
- *H*^{*}_{*it*}: Hazard (unobserved)
- *E_i*: Exposure (presumably constant)
- X_{it}: Un-natural factors conditioning disasters

• Adaptive capacity (i.e., income)?

Explaining Disaster Occurrence

Disasters arise from the intersection of natural hazards and vulnerable societies.

Disasters:

$$D_{jt}^* = f(H_{jt}^*(E_j), X_{jt})$$

• D_{it}^* : Disaster

- Unobserved Observe $D_{jt} = \begin{cases} 1 & \text{if } D_{jt}^* \ge \underline{D} \\ 0 & \text{Otherwise} \end{cases}$
- *D* is as defined by CRED
- *H*^{*}_{*it*}: Hazard (unobserved)
- *E_i*: Exposure (presumably constant)
- X_{it}: Un-natural factors conditioning disasters

What are the "un-natural" factors conditioning disasters?

Adaptive capacity (i.e., income)?

Empirical Analysis

Conclusion

Are Wealthier Countries Less Likely to Experience Disasters?

- Schelling (1992):
 - Suggests the best defense against climate change for many developing countries is continued economic development.
- United Nations Development Programme (2004):
 - Economic development can "intervene in the translation of physical exposure into natural disasters", but good development strategies are crucial.
- Kahn (2005) :
 - Income does not affect the probability that a country experiences a disaster
- Strömberg (2007):
 - Wealthier countries are no less likely to experience a disaster than poor countries

Conclusion

Previous Research

• Schelling (1992):

 Suggests the best defense against climate change for many developing countries is continued economic development.

- United Nations Development Programme (2004):
 - Economic development can "intervene in the translation of physical exposure into natural disasters", but good development strategies are crucial.
- Kahn (2005) :
 - Income does not affect the probability that a country experiences a disaster
- Strömberg (2007):
 - Wealthier countries are no less likely to experience a disaster than poor countries

- Schelling (1992):
 - Suggests the best defense against climate change for many developing countries is continued economic development.
- United Nations Development Programme (2004):
 - Economic development can "intervene in the translation of physical exposure into natural disasters", but good development strategies are crucial.
- Kahn (2005) :
 - Income does not affect the probability that a country experiences a disaster
- Strömberg (2007):
 - Wealthier countries are no less likely to experience a disaster than poor countries

- Schelling (1992):
 - Suggests the best defense against climate change for many developing countries is continued economic development.
- United Nations Development Programme (2004):
 - Economic development can "intervene in the translation of physical exposure into natural disasters", but good development strategies are crucial.
- Kahn (2005) :
 - Income does not affect the probability that a country experiences a disaster
- Strömberg (2007):
 - Wealthier countries are no less likely to experience a disaster than poor countries

Conclusion

- Wheeler (2011) :
 - Other factors are potentially confounding disaster data
 - Attempts to impute climate change effects should take these confounding factors into consideration
 - Controlling for these confounding factors, individuals in wealthy countries are less likely to be affected by disasters than those in poor countries.

- 10 or more people killed
- 2 100 or more people affected
 - Disasters must be reported
 - Citizens must have a voice
 - Freedom of the press to discuss the hazard and its impact
 Strang regulatory equipment of the second secon
- Call for international assistance
 - Country must be engaged in the international community
- Declaration of a state of emergency
 - There must be incentives for politicians to provide relief for their electorate

- 10 or more people killed
- 2 100 or more people affected
 - Disasters must be reported
 - Citizens must have a voice
 - Freedom of the press to discuss the hazard and its impact
 - Strong regulatory environment
- Call for international assistance
 - Country must be engaged in the international community
- Declaration of a state of emergency
 - There must be incentives for politicians to provide relief for their electorate

- 10 or more people killed
- 2 100 or more people affected
 - Disasters must be reported
 - Citizens must have a voice
 - Freedom of the press to discuss the hazard and its impact
 Strong regulatory environment
- Call for international assistance
 - Country must be engaged in the international community
- Declaration of a state of emergency
 - There must be incentives for politicians to provide relief for their electorate

- 10 or more people killed
- 100 or more people affected
 - Disasters must be reported
 - Citizens must have a voice
 - Freedom of the press to discuss the hazard and its impact
 Strong regulatory environment
- Call for international assistance
 - Country must be engaged in the international community
- Declaration of a state of emergency
 - There must be incentives for politicians to provide relief for their electorate

Institutional Quality

Kaufmann, Kraay & Mastruzzi Governance Indicators

- Voice and accountability
- Political stability and absence of violence/terrorism
- Government effectiveness
- Regulatory quality
- Rule of law
- Control of corruption

Institutional Quality Index

 $IQ_{jt} = \alpha(V\&A_{jt}, Stability_{jt}, Effectiveness_{jt}, RQ_{jt}, Rule_{jt}, Corruption_{jt})$

• Factor weights computed using principal components analysis (PCA)

Institutional Quality

Kaufmann, Kraay & Mastruzzi Governance Indicators

- Voice and accountability
- Political stability and absence of violence/terrorism
- Government effectiveness
- Regulatory quality
- Rule of law
- Control of corruption

Institutional Quality Index

 $IQ_{jt} = \alpha(V\&A_{jt}, Stability_{jt}, Effectiveness_{jt}, RQ_{jt}, Rule_{jt}, Corruption_{jt})$

• Factor weights computed using principal components analysis (PCA)

Are Wealthier Countries Less Likely to Suffer Disasters?

Empirical model:

Panel Probit Model

 $\operatorname{Prob}(D_{ijt}=1) = \Phi(E_j, Y_{jt}, IQ_{jt}, t, \nu_i)$

- Prob($D_{ijt} = 1$): Probability of disaster type *i* occurring in country *j* in year *t*
- *E_j*: Time-invariant characteristics capturing hazard exposure for country *j* (geography, land area, etc.)
- Y_{jt}: Time-varying real per capita income for country j (lagged)
- *IQ_{ii}*: Potentially time-varying institutional characteristics for country *j*
- *ν_i*: Country-specific random effect error component
- $\Phi(\cdot)$: Normal cumulative distribution function

Are Wealthier Countries Less Likely to Suffer Disasters?

Empirical model: Panel Probit Model $Prob(D_{ijt} = 1) = \Phi(E_j, Y_{jt}, IQ_{jt}, t, \nu_i)$

- Prob(D_{ijt} = 1): Probability of disaster type *i* occurring in country *j* in year *t*
- *E_j*: Time-invariant characteristics capturing hazard exposure for country *j* (geography, land area, etc.)
- *Y_{jt}*: Time-varying real per capita income for country *j* (lagged)
- *IQ*_{*ji*}: Potentially time-varying institutional characteristics for country *j*
- *ν_i*: Country-specific random effect error component
- $\Phi(\cdot)$: Normal cumulative distribution function

Random Effects Panel Probit Results

	Any		Extreme		Wet Mass	<i>c</i> :
	Disaster	Drought	Iemperatures	Flood	Movement	Storm
Constant	-2.325***	-1.425^{**}	-7.175***	-3.019***	-7.258***	-4.139^{***}
	(-3.329)	(-2.214)	(-6.581)	(-4.219)	(-6.847)	(-4.249)
ln(Real Per	-0.185^{***}	-0.203***	0.083	-0.233***	0.192**	-0.140
Capita GDP)	(-2.938)	(-3.464)	(0.738)	(-3.511)	(2.019)	(-1.588)
0 10 (0.050**	0.011	0.020	0.110***	0.1/5**	0.050
Quality of	(2.001)	-0.011	-0.039	0.110***	-0.165**	0.058
Institutions	(2.001)	(-0.280)	(-0.547)	(2.636)	(-2.432)	(1.021)
Elevation	0 119	-0.088	0.065	0 133	0.853***	-0.119
Elevatori	(1.196)	(-1.022)	(0.466)	(1.328)	(6 111)	(-0.838)
	(1.150)	(1.022)	(0.400)	(1.520)	(0.111)	(0.000)
Abs. Value of	-0.015^{**}	-0.009*	0.013	-0.018^{***}	-0.032***	0.019**
Latitude	(-2.360)	(-1.732)	(1.282)	(-2.778)	(-3.367)	(2.047)
Population Near	0.221	-0.034	0.086	0.458	1.272**	0.658
Ice-Free Coast	(0.611)	(-0.114)	(0.151)	(1.273)	(2.118)	(1.269)
Land Near	0.711*	0.117	0.438	0.154	-0.344	0.366
Ice-Free Coast	(1.893)	(0.360)	(0.781)	(0.413)	(-0.544)	(0.688)
In(Land Area)	0 342***	0.157***	0 272***	0 356***	0.411***	0 283***
in(Lana / irea)	(10.022)	(5.439)	(5.121)	(10.227)	(7.411)	(5.926)
	(10.022)	(3.439)	(5.151)	(10.227)	(7.411)	(3.920)
#Oha	2 947	2 967	2 072	2 967	2 967	2 967
#Crourse	146	146	112	144	146	144
Tog Likelihood	2 002 271	1 007 367	670 544	1 870 707	694 051	1 410 256
Log Encined 2,02221 1,07307 07034 -1,075777 -074.01 -1,410.00						
p < 0.10, p < 0.05, p < 0.01						

Disaster Risk Ranking: Top 10 Most At-Risk

	Any Disaster	Drought	Extreme Temperature	Flood	Mass Movement	Storm
1	India	Ethiopia	Russia	India	China	Canada
2	United States	China	India	Indonesia	Indonesia	United States
3	Indonesia	Indonesia	Pakistan	China	Peru	China
4	Canada	Mozambique	Canada	Russia	Brazil	India
5	China	Tanzania	Ukraine	Australia	Tajikistan	Japan
6	Australia	Kenya	United States	Brazil	India	Mongolia
7	Sri Lanka	Madagascar	France	Pakistan	Nepal	Russia
8	Russia	Sudan	Poland	Vietnam	Malaysia	France
9	Vietnam	Uganda	Italy	Sri Lanka	Mexico	Indonesia
10	Malaysia	Zambia	Belarus	United States	Kyrgyzstan	Australia

Disaster Risk and Social Vulnerability

Country-specific measures of disaster risk and social vulnerability:

- Disaster risk: average predicted probability of experiencing a disaster
- Social vulnerability: average societal footprint of disasters
 - Deaths per 1,000 people in the (lagged) population
 - Persons affected per 1,000 people in the (lagged) population

Is there a relationship between disaster risk and social vulnerability?

Disaster Risk and Social Vulnerability

Country-specific measures of disaster risk and social vulnerability:

- Disaster risk: average predicted probability of experiencing a disaster
- Social vulnerability: average societal footprint of disasters
 - Deaths per 1,000 people in the (lagged) population
 - Persons affected per 1,000 people in the (lagged) population

Is there a relationship between disaster risk and social vulnerability?

Introduction 000000 Empirical Analysis

Conclusion

Disaster Risk and Deaths

Introduction 000000 Empirical Analysis

Conclusion

Disaster Risk and Affected Persons

Avg. Pred. Prob. of Disaster

Pressure and Release Model

Blaikie et al. (1994) introduced a conceptual model to explain society's vulnerability to disasters

- Tracks the progression of vulnerability from root causes to unsafe conditions
- Disasters lie at the complex interaction of two opposing forces:
 - Natural hazard
 - Vulnerable society

Introduction 000000 Empirical Analysis

Conclusion

Pressure and Release Model

Source: Blaikie et al. (1994, modified to incorporate only climate-related hazards).

Root Causes, Dynamic Pressures and Unsafe Conditions

- Unsafe Conditions:
 - Low incomes (real per capita income)
 - Physical infrastructure (telephones per 1,000 people)
 - Marginalized groups (dependency ratio and ethnic fractionalization)
- Dynamic Pressures:
 - Population pressures (population density and urban population)
- Root Causes:
 - Political institutions and ideologies (institutional quality)
 - Limited access to power (Gini coefficient on income inequality)
 - Economic ideologies (openness to trade)

Root Causes, Dynamic Pressures and Unsafe Conditions

- Unsafe Conditions:
 - Low incomes (real per capita income)
 - Physical infrastructure (telephones per 1,000 people)
 - Marginalized groups (dependency ratio and ethnic fractionalization)
- Dynamic Pressures:
 - Population pressures (population density and urban population)
- Root Causes:
 - Political institutions and ideologies (institutional quality)
 - Limited access to power (Gini coefficient on income inequality)
 - Economic ideologies (openness to trade)

Root Causes, Dynamic Pressures and Unsafe Conditions

- Unsafe Conditions:
 - Low incomes (real per capita income)
 - Physical infrastructure (telephones per 1,000 people)
 - Marginalized groups (dependency ratio and ethnic fractionalization)
- Dynamic Pressures:
 - Population pressures (population density and urban population)
- Root Causes:
 - Political institutions and ideologies (institutional quality)
 - Limited access to power (Gini coefficient on income inequality)
 - Economic ideologies (openness to trade)

Conclusion

Testing the Pressure and Release Model

Empirical Models:

Model #1

$$\ln\left(\frac{Deaths_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Model #2

$$\ln\left(\frac{Affected_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Conclusion

Testing the Pressure and Release Model

Empirical Models: Model #1

$$\ln\left(\frac{Deaths_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Model #2

$$\ln\left(\frac{Affected_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Conclusion

Testing the Pressure and Release Model

Empirical Models:

Model #1

$$\ln\left(\frac{Deaths_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Model #2

$$\ln\left(\frac{Affected_{it}+1}{Population_{it}/1,000}\right) = x'_{it}\beta + z'_i\gamma + \delta t + \nu_i + u_{it}$$

Conclusion

Testing the Pressure and Release Model

	$\ln\left(\frac{\text{Deaths}}{\text{Population}/1,000} ight)$	$\ln\left(\frac{\text{Affected}}{\text{Population}/1,000} ight)$	
Constant	-9.054***	3.126	
	(-2.821)	(0.337)	
ln(Real GDP per capita)	-0.363***	-0.822***	
	(-2.835)	(-2.614)	
ln(Dependency)	1.985*	1.624	
	(2.520)	(0.782)	
ln(Physicians per 1,000)	0.372***	0.466	
	(3.178)	(1.545)	
Population near coast (%)	0.406*	1.341**	
	(1.708)	(2.299)	
ln(Population density)	0.165***	-0.404^{***}	
	(2.828)	(-2.811)	
ln(Urban population)	-0.308^{***}	-0.241	
	(-4.520)	(-1.351)	
Income inequality	0.016**	0.043**	
	(2.030)	(1.929)	
Fractionalization	-0.405	-1.624*	
	(-1.182)	(-1.835)	
Time trend	Yes	Yes	
Disaster count controls	Yes	Yes	
# Obs	1,477	1,477	
# Groups	98	98	
R ² : Within	0.08	0.09	
R ² : Between	0.40	0.62	
R ² : Overall	0.23	0.35	

Introduction 000000 Empirical Analysis 000000 000 00000 Conclusion

- After controlling for factors that affect disaster reporting, wealthier countries are less likely to suffer disasters than poor countries
 - This contrasts with several high-profile studies that fail to control for factors influencing disaster reporting
 - Confounding variables: time, institutional quality, greater populations at risk
- There is a positive relationship between disaster risk and social vulnerability
 - Higher disaster risk is correlated with greater social disaster outcomes

Conclusion

- After controlling for factors that affect disaster reporting, wealthier countries are less likely to suffer disasters than poor countries
 - This contrasts with several high-profile studies that fail to control for factors influencing disaster reporting
 Confounding variables: time, institutional quality, greater populations at risk
- There is a positive relationship between disaster risk and social vulnerability
 - Higher disaster risk is correlated with greater social disaster outcomes

Conclusion

- Our results support many of the hypotheses of the Pressure and Release Model
- Conditional on a disaster occurring:
 - Wealthier countries are less vulnerable than poorer countries
 - Countries with relatively larger *vulnerable* population segments are more vulnerable
 - More urban societies are less vulnerable than autocratic societies
 - More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
 - Countries with less equal income distributions are more vulnerable than egalitarian societies

Concluding Remarks

• Our results support many of the hypotheses of the Pressure and Release Model

• Conditional on a disaster occurring:

- Wealthier countries are less vulnerable than poorer countries
- Countries with relatively larger *vulnerable* population segments are more vulnerable
- More urban societies are less vulnerable than autocratic societies
- More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
- Countries with less equal income distributions are more vulnerable than egalitarian societies

- Our results support many of the hypotheses of the Pressure and Release Model
- Conditional on a disaster occurring:
 - Wealthier countries are less vulnerable than poorer countries
 - Countries with relatively larger *vulnerable* population segments are more vulnerable
 - More urban societies are less vulnerable than autocratic societies
 - More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
 - Countries with less equal income distributions are more vulnerable than egalitarian societies

- Our results support many of the hypotheses of the Pressure and Release Model
- Conditional on a disaster occurring:
 - Wealthier countries are less vulnerable than poorer countries
 - Countries with relatively larger *vulnerable* population segments are more vulnerable
 - More urban societies are less vulnerable than autocratic societies
 - More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
 - Countries with less equal income distributions are more vulnerable than egalitarian societies

Concluding Remarks

• Our results support many of the hypotheses of the Pressure and Release Model

• Conditional on a disaster occurring:

- Wealthier countries are less vulnerable than poorer countries
- Countries with relatively larger *vulnerable* population segments are more vulnerable
- More urban societies are less vulnerable than autocratic societies
- More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
- Countries with less equal income distributions are more vulnerable than egalitarian societies

Concluding Remarks

• Our results support many of the hypotheses of the Pressure and Release Model

• Conditional on a disaster occurring:

- Wealthier countries are less vulnerable than poorer countries
- Countries with relatively larger *vulnerable* population segments are more vulnerable
- More urban societies are less vulnerable than autocratic societies
- More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
- Countries with less equal income distributions are more vulnerable than egalitarian societies
Empirical Analysis 000000 000 0000 00000

Concluding Remarks

• Our results support many of the hypotheses of the Pressure and Release Model

• Conditional on a disaster occurring:

- Wealthier countries are less vulnerable than poorer countries
- Countries with relatively larger *vulnerable* population segments are more vulnerable
- More urban societies are less vulnerable than autocratic societies
- More ethnically heterogeneous societies are less vulnerable than ethnically homogeneous societies
- Countries with less equal income distributions are more vulnerable than egalitarian societies

Introduction 000000 Empirical Analysis

Conclusion

Thank you!

patrick.ward@cmcc.it

Introduction	Empirical Analysis	Conclusion
000000	000000 000 000 000	

Empirical Analysis

Conclusion

Introduction	Empirical Analysis	Conclusion
000000	000000 000 000 000	

