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The precautionary principle

I In the presence of physical uncertainty, society must take take
robust preventive action to guard against worst-case outcomes

I The higher the degree of uncertainty, the more aggressive this
preventive action should be

I We formalize “uncertainty” and investigate the PP in a stylized
problem of reversible pollution control

Question: Do “optimal” adaptation and mitigation decisions agree
with the PP?

Main result: Adaptation decisions are always consistent with
the PP, mitigation not always



Uncertainty vs. risk

I Pollution control with uncertain dynamic structure

I Unlike situations featuring pure risk, here it is impossible to assign
probabilities to events (Knightian uncertainty)

I Rather, we grant that a certain “benchmark” model is misspecified

I Controlling the degree of this misspecification, we search for robust
solutions that perform “well” regardless of the true distribution

I Our normative goal is to maximize the utility of worst-case outcome
that may occur



Who cares?

1. High structural uncertainty over the physics of environmental
phenomena makes cost-benefit analysis based on expected utility
untenable (Weitzman (RES, 2009))

2. High sensitivity of model outputs to seemingly ad hoc modeling
assumptions (e.g., damage function, social discount rate) on which
often little consensus exists, is problematic (Weitzman 2010)

⇒ Different models may arrive at dramatically different policy
recommendations (e.g., DICE vs. Stern Report), generating heated
debate and much confusion over the magnitude and timing of
desirable policy

I Our approach tempers the above by making the degree of model
misspecification (driven by the totality of available science) the
most important model input



The literature we draw from

I Knightian uncertainty first discussed by (no surprise) Knight (1921).
Ellsberg paradox (QJE, 1961) provided behavioral justification

I Gilboa and Schmeidler (JME, 1989) axiomatize maxmin expected utility
over a set of uncertain priors

I Motivated by model misspecification in macro, Hansen and Sargent and
coauthors (AER 2001; JET 2006) extend the G-S framework to dynamic
settings, developing theory of robust control

I Nascent literature of applying robust control to environmental economics

I Roseta-Palma and Xepapadeas (JRU, 2004) apply framework to
water management

I Gonzalez (ERE, 2008) studies PP for a different model of pollution
control

I Vardas and Xepapadeas (ERE, 2010) study PP for biodiversity

management



Other models of ambiguity

I Recursive Mutiple Priors: Developed by Chen and Epstein
(Econometrica 2002), Epstein and Schneider (JET 2004)

I Asano (ERE, 2010) applies this model to study PP vis-a-vis
timing of environmental policy

I Smooth Ambiguity Model: Developed by Klibanoff, Marinacci,
and Mukerji (Econometrica, 2005; JET, 2009)

I Gollier and Guerlinger (2008), Traeger (2009), Millner, Dietz
and Heal (2010) apply the model to climate policy



Model description

I Adapt Dockner and Long (JEEM, 1993) infinite horizon dynamic
model

I E (t): emissions at time t

I P(t): stock of pollution at time t

I Quadratic utility u(E ) = − 1
2E 2 + AE

I We modify the standard quadratic damage function
D (P) = sP2, s > 0 by allowing the possibility of investment in
adaptation technology



Adaptation technology

I At time 0, the government sets a level of adaptation technology
z ∈ [0, 1] that alters the damage function in the following way

D(P, z) = zsP2

I Thus, a lower level of z implies a higher investment in adaptation
technology

I The cost of making an investment z is modeled by a strictly
decreasing and convex function φ(z) : [0, 1] 7→ <+ that satisfies

φ(1) = 0, lim
z→0

φ(z) =∞, lim
z→0

φ′(z) = −∞.

I Possible candidates for φ(z) include 1/zk − 1, for k > 0.



The unambiguous benchmark problem

I Risk is introduced to the standard model so that the stock of the
pollutant accumulates according to the diffusion process

dPt = (E −mPt) dt + σdzt (1)

where {zt : t ≥ 0} is a Brownian motion on an underlying
probabibility space (Ω,F , G )

I Thus the government’s objective, given a level of adaptation
technology z , is to maximize individual welfare or

max
E

E

∫ ∞
0

e−ρt
[

AE − E 2

2
− zsP2

]
dt

subject to: (1), P(0) = P0. (2)

Optimization problem (2) is referred to as the benchmark model.



Introducing ambiguity

I If there were no fear of model misspecification solving the
benchmark problem would be sufficient

I The perturbed model is obtained by performing a change of
measure from P to Q by replacing zt by

ẑt +

∫ t

0

vsds, (3)

where {ẑt :, t ≥ 0} is a Brownian motion and {vt : t ≥ 0} is a
measurable drift distortion, so that vt = vt(P(s) : s ≤ t)

I The distortions will be zero when vt ≡ 0 and the two measures G
and Q coincide.

I Pollution dynamics under model misspecification can be written as:

dP = (E −mP + σv) dt + σdz (4)



Restricting the degree of model misspecification

I The discrepancy between the two measures G and Q is measured
through their relative entropy

R(Q) =

∫ ∞
0

e−ρt
1

2
E
[
v(t)2

]
dt, (5)

I To express the idea that even when the model is misspecified the
benchmark model remains a “good” approximation, the
misspecification error is restrained so that∫ ∞

0

e−ρtE[v(t)2]dt ≤ η <∞, (6)

I By modifying the value of η in (6) the decision-maker controls the
degree of model misspecification.



Robust control

I Under model misspecification benchmark pollution dynamics (1) are
replaced by (4).

I Two robust control problems can be associated with the solution to
our problem

I The constraint robust control problem

J(P0, η, z) = max
E

min
v

E

∫ ∞
0

e−ρt
[

AE − E 2

2
− szP2

]
dt

subject to: (4), (6), P(0) = P0. (7)

I The multiplier robust control problem

J(P0, θ, z) = max
E

min
v

E

∫ ∞
0

e−ρt
[

AE − E 2

2
− szP2 +

θv2

2

]
dt

subject to: (4), P(0) = P0. (8)



Relationship between the two problems

I In the constraint problem (7), the parameter η is the maximum
expected misspecification error that the decision-maker is willing to
consider

I In the multiplier problem (8), the parameter θ can be interpreted as
the lagrangean multiplier associated with entropy constraint
R(Q) ≤ η

I When θ →∞ or, equivalently η = 0, then there are no concerns
about model misspecification and the decision-maker may safely
consider just the benchmark model



Relationship between the two problems

I The relationship between the two robust control problems is subtle.
For instance, a particular θ can be associated with no, or even
multiple, η’s, while a particular η can map to multiple θ’s

I Proposition [Hansen and Sargent (2001)]: Suppose J is strictly
decreasing in η, θ∗ ∈ (θ,+∞], and that there exists a solution E∗

and v∗ (corresponding to measure Q∗) to the multiplier
problem (8). Then, that E∗ also solves the constraint problem (7)
for η = η∗ = R(Q∗).

I In what follows, we will focus on the multiplier problem (8), and
relate it to the (more intuitive) constraint problem through the
above result



Solution of robust control problem with fixed z

I Solve the Bellman-Isaacs equation to determine value function

ρV = max
E

min
v


AE − E 2

2
− szP2 +

θv 2

2
+ VP(E −mP + σv) +

σ2

2
VPP

ff

I After some algebra

V (P, θ, z) = α1(θ, z)P2 + α2(θ, z)P + α3(θ, z)

I Max-min optimal emissions E∗ are linear in P and satisfy

E∗(P, θ, z) = A + α2(θ, z) + α1(θ, z)P,

I Worst-case misspecification v∗ is given by

v∗(P, θ, z) = −σ
θ

(2α1(θ, z)P + α2(θ, z)).



Properties of the fixed-z optimal solution

I Lemma: The value function V (P; θ, z) is

(a) Strictly increasing and concave in θ

(b) Strictly decreasing and convex in z. Moreover, the partial
derivative Vz is increasing in θ.

I α1(θ, z) and α2(θ, z) are negative and increasing in θ

I Given fixed z , the more uncertainty over pollution dynamics,
the more one chooses to mitigate emissions at a given
pollution level P (Straight-up PP)

I α1(θ, z) and α2(θ, z) are decreasing in z

I Given fixed θ, the less we invest in adaptation technology, the
more we mitigate emissions



Characterizing the worst-case pollution accumulation

I Proposition. Worst-case pollution accumulation P∗ is a Gaussian
diffusion process with a stationary distribution that is

N

(
4A(m+ρ)

4m2+4mρ+8sz(1−σ2

θ )
, σ2q

(2m+ρ)2+8sz(1−σ2

θ )−ρ

)
I In steady state, the expected value and variance of P∗ are

decreasing in θ and z

I Since we also know the transient distribution of P∗, the worst-case
entropy of our misspecified model

R(P∗(θ, z), θ, z) =

∫ ∞
0

e−ρtE[v∗(t)2]dt,

can be explicitly calculated



Solving the optimal investment problem

I Suppose that at time 0 a policy maker wants to decide how much
to invest in adaptation technology (choose z)

I Statistical evidence and climate science suggests a possible model
misspecification that corresponds to an entropy of η

I The policy maker takes this misspefication seriously, so that a
maxmin criterion is adopted over future welfare

I Recall that V (P0, θ, z) denotes the maxmin value of a multiplier
problem θ. Thus, at time 0, the policy maker wishes to solve the
following optimization problem

max
z∈[0,1]

V (P0, θ, z)− φ(z) (9)



Adaptation vs. Mitigation

I Recall that pollution damages are given by D = zsP2

I There are two basic, non mutually exclusive ways to guard against
catastrophic damages.

1. Improve adaptation technology (i.e., lower z)

2. Mitigate emissions (i.e., lower P)

The PP we wish to investigate is the following:

When uncertainty grows, we must increase both our levels of
(a) adaptation investment, and (b) emissions mitigation



Optimal adaptation and mitigation

Theorem 1 [Adaptation] Optimal adaptation investment strictly
increases in model uncertainty. In other words, z∗(θ) is strictly
increasing in θ.

I The situation is not so simple with mitigation. Indeed, it is possible
for mitigation go up or down as model uncertainty increases.

I The responsiveness of our optimal adaptation decision z∗(θ) to
changes in θ measured through

dz∗

dθ
(θ)

will play a critical role

I The interplay of adaptation and mitigation complicates the
rationality of a PP



Optimal mitigation

Theorem 2 [Mitigation] Consider a neighborhood of θ, say
[θmin, θmax]. If z∗(θ) satisfies

(a)

dz∗

dθ
(θ)>(<)

−∂α1

∂θ (θ, z∗(θ))− 2α2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂α1

∂z (θ, z∗(θ))
, (10)

then emissions are unambiguously decreasing (increasing) in θ
in [θmin, θmax];

(c)

−∂α1

∂θ (θ, z∗(θ))
∂α1

∂z (θ, z∗(θ))
<

dz∗

dθ
(θ) <

−∂α1

∂θ (θ, z∗(θ))− 2α2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂α1

∂z (θ, z∗(θ))
(11)

then emissions will be decreasing in θ in [θmin, θmax] if and only
if current pollution levels are high enough.



Optimal mitigation (in english...)

I Corollary Emissions will be decreasing in θ if levels of optimal
adaptation investment are high enough (i.e., z∗(θ) is low enough)
and the rate of change of z∗(θ) is high enough

I In such cases there is so much investment in adaptation, and
adaptation decisions are so sensitive to uncertainty, that mitigation
is counter-productive

I The above is interesting when we recall the opposite result we
obtain in the model with fixed adaptation technology



The effect of adaptation cost on precaution

I Focus on the following family of cost functions

φ(z ; k) =
1

zk
− 1, k > 0, (12)

I Proposition Fix a level of uncertainty θ and consider a family of
optimization problems (9), parametrized according to Eq. (12).

(a) Optimal values of z∗(θ; k) are increasing in k. In other words,
optimal levels of adaptation investment are decreasing in the
cost of adaptation technology.

(b) Optimal emissions are decreasing in k. In other words, optimal
levels of mitigation are increasing in the cost of adaptation
technology.

I The more expensive an adaptation technology is, the less we can
expect to invest in it and the more we expect to mitigate



Numerical experiments – Optimal adaptation (1)
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Figure: z∗(θ; k) as a function of θ for k = 1, 2, .., 6.



Numerical experiments – Optimal adaptation (2)
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Figure: z∗(θ;k)
z∗(∞;k) as a function of θ for k = 1, 2, .., 6.



The effect of adaptation cost on mitigation

I Numerical results confirm theoretical findings on adaptation: I.e.,
optimal adaptation decisions comport with PP regardless of the cost
function

I But what happens to mitigation decisions as we vary k?

I Turns out that all three cases of Theorem 2 can occur

I Numerical results suggest that, when the cost of adaptation
technology is low enough (for e.g., when k = 1.5), the PP can be
unambiguously irrational



Numerical experiments– Optimal mitigation (1)
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Figure: Emissions as a function of P for different θ:
(k = 5,P0 = 100). This case corresponds to a conventional PP.



Numerical experiments– Optimal mitigation (2)
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Figure: Emissions as a function of P for different θ:
(k = 1.8,P0 = 100). This case corresponds to part (b) of Theorem
2, i.e., for high enough pollution we observe a reversal of the PP



Numerical experiments– Optimal mitigation (3)
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Figure: Emissions as a function of P for different θ:
(k = 1.5,P0 = 100). This case corresponds to an unambiguous
reversal of the PP .



Thank You


