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a b s t r a c t

The persistent uncertainty about mid-century CO2 emissions targets is likely to affect not only the

technological choices that energy-producing firms will make in the future but also their current

investment decisions. We illustrate this effect on CO2 price and global energy transition within a

MERGE-type general-equilibrium model framework, by considering simple stochastic CO2 policy

scenarios. In these scenarios, economic agents know that credible long-run CO2 emissions targets will

be set in 2020, with two possible outcomes: either a ‘‘hard cap’’ or a ‘‘soft cap’’. Each scenario is

characterized by the relative probabilities of both possible caps. We derive consistent stochastic

trajectories—with two branches after 2020—for prices and quantities of energy commodities and CO2

emissions permits. The impact of uncertain long-run CO2 emissions targets on prices and technological

trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule

with risk premia observed for certain scenarios.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper shows how the current uncertainty about the 2020–
2050 CO2 emissions targets may affect CO2 and energy prices as
well as technological choices in the energy sector.

To assess the cost of reducing GHG emissions, applied general-
equilibrium models linking aggregated descriptions of economies
and detailed energy sectors together2 have been developed. Some
of them, for instance MERGE (Manne et al., 1995), GEMINI
(Bernard and Vielle, 2003), IGSM (Sokolov et al., 2005) and WITCH
(Bosetti et al., 2006), have been used by IPCC (2007) and USCCSP
(2007) to evaluate climate change policies. So far, the issue of
agents’ behavior under uncertainty has been addressed in these
models through sensitivity analysis (Löschel and Otto, 2009;
Magné et al., 2010), Monte-Carlo simulation (Kypreos, 2006) and
stochastic formulations where agents hedge themselves against
some probabilistic outcomes. This last approach was first
introduced by Manne and Richels (1992) and Manne and Olsen
(1996) who studied the effect of a low-probability climate
catastrophe on agent’s behavior. More recently,3 Bosetti and
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Tavoni (2009) investigate the impact of uncertain energy-related
R&D activities and Loulou et al. (2009) derive different EMF 22
radiative forcing scenarios by assuming an uncertain sensitivity of
climate to emissions.

In this paper, we use a stochastic approach to illustrate how
the persistent uncertainty about the 2050 CO2 emissions caps
impacts prices and technological choices in the energy sector.4

These energy prices are especially useful to understand agents’
behavior and assess the relevance of our model’s results.

In a deterministic model, the agents plan their actions with a
perfect knowledge of the future, and the efficient (or clean)
technologies expand at the optimal rate in the economy. In our
model, until 2020, the agents have to invest before knowing the
full sequence of emissions caps imposed to regional economies,
by trading off the gain in postponing the adoption of efficient but
expensive technologies against the risk of being tied to some
detrimental technological choice once the actual emissions caps
are set.

The model we use is a modified stochastic version of the
MERGE model.5 For the sake of illustration, here uncertainty only
involves two political outcomes, with, at the end of 2020, the
setting of either a ‘‘hard-cap’’ policy or a ‘‘soft-cap’’ policy for
4 The energy sector represents 76% of total direct CO2 emissions in 2005 (IEA,

2008b).
5 See Manne et al. (1995) for a presentation of the MERGE model.
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energy-related CO2 emissions. Each policy defines series of
regional quotas which are linearly decreasing until 2050 and
constant after this date. Until 2050 the hard-cap and soft-cap
quotas are respectively consistent with the IPCC (2007)’s 450 and
550 ppm atmospheric-GHG-concentration scenarios. However,
over the model’s whole horizon, the hard-cap and soft-cap
policies are less stringent than the two IPCC’s scenarios since
complying with these scenarios would involve post-2050 emis-
sions reductions (IPCC, 2007; IEA, 2008b).

In our model, all agents (i.e., firms and households) are forward
looking, in the sense that firms (households) always act so as to
maximize their expected present value (expected sum of
discounted utilities) under rational expectations. In other words,
in each date firms base their current decisions on consistent
subsequent prices of inputs and outputs (or, in the case of
decisions made until 2020, consistent subsequent prices in each
possible outcome), i.e., prices that precisely result from the
decisions currently made.

Firstly, our approach makes possible an explicit modelling of
agents behavior in the presence of long-run CO2 policy un-
certainty. Secondly, it yields stochastic scenarios of energy
prices—for CO2, oil, gas, power—with two possible sequences
for post-2020 prices, that are consistent with the stochastic
political scenario under consideration. Note that the unique pre-
2020 sequence and the two possible post-2020 sequences
obtained for the price of a given energy commodity may broadly
differ from the two deterministic sequences of prices that would
be determined by successively considering each CO2 target as
certain from the beginning (i.e., 2005 in our model). In addition, as
illustrated later, a stochastic price scenario is not necessarily
bounded by the corresponding two deterministic sequences of
prices. This shows the interest of a stochastic-scenario-based
approach for studying the energy transition when long-run CO2

emissions targets are uncertain.
Section 2 presents the stochastic CO2-emissions policy scenar-

ios under consideration and motivates our approach. The
structure, calibration and computation of our stochastic general
equilibrium model are discussed in Section 3. The simulation
results are studied in Section 4, with an emphasis on the impact of
uncertainty on prices and technology trajectories. The last section
concludes.
2. A stochastic-scenario approach for long-run emissions
targets

The forthcoming energy transition, that will result from the
technological choice made by the economic agents, will crucially
depend on CO2 emission targets. If current negotiations can set
credible regional emissions targets on the short and intermediate
runs, uncertainty on long-run targets (i.e., up to the middle of the
century and beyond) is likely to persist. In addition, economic
agents are likely to consider these long-run emissions targets as
credible only once they have been transposed into regional energy
policies (since, meanwhile, any long-run commitment might be
offset by possible political, economic or environmental shocks,
Frankel, 2009). In our model, we therefore assume that the agents
have currently an incomplete information. They know the
emissions targets set until 2020 but they consider that credible
mid-century emissions targets will be set in 2020 only.

Therefore, until 2020 they face an uncertainty which impacts
not only their future but also their current technological choices
and investments. For example, the uncertainty on long-term
emissions targets can lead the firms to delay costly investment in
clean technologies, although this might cause very high CO2

emissions costs if restrictive emissions targets are finally set.
Indeed this effect is not taken into account in a deterministic
model where agents plan their actions with a perfect knowledge
of the future and clean technologies expand at the optimal rates in
the economy.

Since our primary goal is to illustrate the effect of uncertain
long-run CO2 emissions targets on CO2 price and energy
transition, we consider here a simple stochastic scenario, in the
sense that agents are aware that either a hard-cap or a soft-cap
target will be set for mid-century energy-related CO2 emissions.
As earlier explained, agents consider that the political choice
between the hard and soft caps will be definitely made in a
credible way in year 2020. To better illustrate the effect of
uncertainty, different assumptions about the relative probabilities
of these two possible caps are considered.

More precisely, in our model, the CO2 emissions targets are
enforced through a cap-and-trade mechanism. There are two
successive series of linearly decreasing emissions caps. These
series are reported in Table 1. For every OECD region, the first
series, which spans from 2010 to 2020, sets an emission cap for
every period. These caps decrease linearly so as to converge
towards the 2020 emissions target. For each OECD or non-OECD
region, the second series of emissions caps concern the post-2020
periods. The caps linearly decrease from 2020 to 2050, so as to
reach either the hard-cap or the soft-cap emission stabilization
level in 2050, and after remain constant.

The OECD countries commit themselves to known reduction
levels of energy-related CO2 emissions for 2020. The European
Union agrees on a reduction of 20% with respect to 1990. North
America (USA, Canada and Mexico) agrees to reduce emissions by
17% with respect to 2005 (IHT, 2009). The Pacific OECD countries
(Japan, South Korea, Australia and New Zealand) are assumed to
commit themselves to the same target as North America. Until
2020, the emissions of the non-OECD countries are not limited.

The climate negotiations for the period 2025–2050 are
assumed to be finalized in 2020, and to yield at that date either
the hard-cap or the soft-cap climate agreement. Therefore, until
2020, households and firms ignore which one of these two caps
will be set. In the hard-cap outcome, every OECD region has to cut
emissions in 2050 by a factor 4 with respect to 2005. Every non-
OECD region commits to a 27% emission reduction by 2050 with
respect to 2005. Globally, these commitments correspond to a
halving of energy-related CO2 emissions by 2050 with respect to
2005.

If the soft cap is set, every OECD region has to cut emissions in
2050 by a factor 3 with respect to 2005. Every non-OECD region
commits to increase its emissions in 2050 by no more than 14%
with respect to 2005. The soft cap corresponds to a 25% decrease
in global emissions in 2050 with respect to 2005.

Until 2050 the emissions corresponding to the hard and soft
caps are respectively consistent with the 450 and 550 ppm
scenarios proposed by IEA (2008b) on the basis of IPCC (2007).
However, when considering the model’s whole horizon, the hard
and soft caps are less constraining than the 450 and 550 ppm
scenarios since here, after 2050, emissions are only assumed to be
stabilized.

Unused emissions permits can be banked (ensuring inter-
temporal efficiency) from 2010 on for OECD regions and from
2025 on for non-OECD regions. From 2060 on, banked permits can
no longer be used. Inter-regional trade of emissions permits (i.e., a
global CO2 emission permits market that ensures spatial effi-
ciency) occurs only after 2020.

In the stochastic CO2 policy scenarios considered here, the two
possible post-2020 series of caps represent two distinct states of
the world, as illustrated in plain line on the left-side of Fig. 1. As in
Manne and Olsen (1996), we can oppose a ‘‘Learn then Act’’ model
(where the scenario is deterministic) to an ‘‘Act then Learn’’ model
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Fig. 1. Deterministic and stochastic scenarios with examples of resulting equilibrium trajectories for prices or quantities.

Table 1
CO2 emissions caps (in billion tons per year).

Region First series of caps Second series of caps

Soft cap Hard cap

2005a
y2020 2025y2050–2100 2025y2050–2100

North America 6.88y5.71 (�17%) 5.26y2.29 (�67%) 4.91y1.72 (�75%)

European Union 4.10y3.32 (�19%) 3.07y1.37 (�67%) 2.86y1.03 (�75%)

Pacific OECD 2.19y1.82 (�17%) 1.68y0.73 (�67%) 1.57y0.55 (�75%)

China 5.46 7.63y6.22 (+14%) 7.36y4.00 (�27%)

India 1.23 1.72y1.40 (+14%) 1.66y0.90 (�27%)

Russia 1.57 2.20y1.79 (+14%) 2.12y1.15 (�27%)

Middle East 1.32 1.84 y1.50 (+14%) 1.77y0.96 (�27%)

Asia non-OECDb 1.50 2.09y1.70 (+14%) 2.02y1.10 (�27%)

Latin America 1.00 1.40 y1.14 (+14%) 1.35 y0.74 (�27%)

Africa 0.86 1.20 y0.98 (+14%) 1.16 y0.63 (�27%)

Rest of the world 1.20 1.68 y1.37 (+14%) 1.62 y0.88 (�27%)

World 27.3 29.8 y20.5 (�25%) 28.4 y13.7 (�50%)

Figures in brackets give the relative change with respect to emissions in 2005.

‘‘y’’ denotes a linear decrease in the cap.

a Figures are historical emissions (computed from IEA, 2007b).
b Asia non-OECD excludes China and India.
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(where the scenario is stochastic and takes the form of a
probability tree). Our stochastic scenario is common knowledge
shared by all agents of the model who are equally informed. These
agents—households who maximize expected utilities and firms
who maximize expected profits—are forward looking in the sense
that they base current decisions on expected prices and
quantities. They are assumed to have a perfect foresight, so that
their state-conditional expectations are true. In other words, they
take their decisions knowing the prices and quantities they
would face in each branch, but ignoring until 2020 which branch
will materialize. At equilibrium, both price and quantity of every
commodity follow a stochastic trajectory, with a unique
branch (two possible branches) until 2020 (after 2020), as
illustrated in plain line on the right side of Fig. 1. Our approach
therefore yields stochastic trajectories which are consistent with
the underlying stochastic policy scenario. For the sake of
illustration, in Fig. 1, the one-branch trajectory corresponding to
each deterministic CO2 policy scenario (i.e., when either the hard
cap or the soft cap is set from the very start) is also indicated in
dashed line.
3. Presentation of the general equilibrium model

To assess the impact of uncertain mid-century CO2 emissions
targets on current and future energy transition, we use a model
derived from MERGE (Manne et al., 1995). More specifically,
unlike MERGE, our model contains no modelling of the impact of
GHG emissions on climate change, but mere accounting relations
between CO2 emissions and energy technology use. The model’s
horizon extends from 2005 (base year) to 2100, with 5-year time
periods. The world is divided into 11 regions: North America,
European Union, OECD Pacific, China, India, non-OECD Asia,
Russia, Middle East, Latin America, Africa and rest of the world.
Recent data (e.g., IEA, 2008a, 2008b; EIA, 2007) have been used to
calibrate the model. In addition, our model is stochastic as it
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allows agents to consider different possible outcomes for long-run
CO2 emissions targets.

Following Manne et al. (1995), an intuitive solution would be
to introduce uncertainty in our model by means of non-
anticipativity constraints.6 However, in the wake of Meeraus
and Rutherford (2005), we use a tighter formulation which limits
the number of variables and constraints by taking into account
the recursive structure of the model. Apart these elements, the
formulation and the solution methods for the deterministic and
the stochastic versions of our model are quite similar. For this
reason, the following section is devoted to a presentation of the
model in a deterministic framework.

3.1. Description of the model

In each region, a representative household sells its labor force,
owns four firms,7 the whole capital stock, the stock of in situ

natural resources (underground reserves) and the quota of
emissions permits (i.e., the volume of emissions that satisfies
the targeted cap). Therefore, the household’s revenue consists of
firms’ profits, interests on capital, rents from natural resource
exploitation, and the revenue from the emission permits market.8

Each region i maximizes the sum of its discounted utilities of
consumption, defined as follows:

XT

t ¼ 0

bi,tLi,tlog
Ci,t

Li,t

� �

Ci,t is the total consumption in region i at period t. Li,t is the
population of region i at period t (the size of the household). The
utility function therefore depends on the logarithm of the per-
capita consumption, with

@ Li,tlog
Ci,t

Li,t

� �� �

@Ci,t
¼

1

ðCi,t=Li,tÞ

In every period, the region’s marginal utility is thus inversely
proportional to its per-capita consumption. bi,t is the discount
factor for utility in region i for period t, with bi,t ¼ bi,t�1e�ri,t ,
where ri,t is the region’s rate of time preference for utility.

The good consumed by the households represents a composite

of all items9 produced outside the energy sector (Manne et al., 1995).
It serves as numeraire in the model and it is measured in terms of
units of purchasing power for the year 2005. This composite good
can be used for final consumption (by households), capital
accumulation (investment in firms) and intermediate consump-
tion (in the four industrial sectors).

The composite good is produced in the final industrial sector
by using different generations (vintages) of equipment. Each of
them produces the same composite good and requires capital (k),
labor (l), electric (e) and non-electric energy (n) as inputs. At each
period, to increase its production capacity, the firm of the final
6 Let us for instance consider that mid-century CO2 emissions targets are

assumed to be set in 2020, and that agents (correctly) anticipate two possible

outcomes. This stochastic scenario could then be handled by duplicating every

variable, as there are two possible states of the world. The non-anticipativity

constraints would force every variable and its duplicate to be equal until 2020.
7 Each firm represents one of the following four industrial sectors: final sector

producing the composite good, electric production, non-electric energy produc-

tion, natural resources (oil, gas and coal) extraction.
8 The quota of emissions permits is sold by the household to the two energy

firms of the region. Since the household owns these firms, this is equivalent to

ignoring this revenue and considering firm’s profits on a before-CO2-emission-cost

basis. Nevertheless, the model implicitly considers a regional CO2 emission permit

market, which influences the technological choices made by the firms.
9 This includes all intermediate and consumption goods and services, as well

as all the final energy needs of the economy (firms and households).
sector can install a new vintage with flexibility in the relative
quantities of inputs. However, it can no longer adjust the quantity
of inputs once the vintage is installed. As a result, at every period,
the substitution between inputs is only possible for the new
generation of equipment. Thus, the final sector is somehow locked
in the short-run by previous technical choices. Each vintage
undergoes an (exogenous) exponential scrapping. The production
function corresponding to a new vintage at period t is described
by a nested Constant-Elasticity-of-Substitution function (for ease
of notation, the subscript i is here omitted):

Ftðk,l,e,nÞ ¼ ½at½k
aðAtltÞ

1�a
�ðs�1Þ=sþbt½e

bn1�b�ðs�1Þ=s�s=ðs�1Þ

The parameter At introduces an exogenous improvement in labor
productivity. a is the optimal value share of capital in the labor/
capital pair and b is the optimal value share of electric energy in
the electric/non-electric energy pair. The elasticity of substitution
between energy and non-energy inputs is s. This can be
considered as a long-run elasticity, whereas in every period the
short-run elasticity depends on existing vintages. The time-
dependent scaling factors at and bt reflect exogenous energy-
efficiency improvements.

Electric and non-electric inputs are supplied by two distinct
industrial sectors that use different Leontief technologies to
transform fossil fuels and composite goods (used as intermediate
goods) into energy for the final sector. The technologies available
in these sectors are presented in Tables 2 and 3. The combustion
of fossil fuels produces CO2 emissions which must be covered by
the emissions quota available for the period. Each technology is
characterized by a type of fuel input (oil, coal, gas, or none10 for
renewable), a fuel efficiency, an emission rate and a non-fuel cost.
Unlike Magné et al. (2010) and Manne and Richels (2004), we
consider exogenously given non-fuel costs (with no learning-by-
doing effect). Some constraints render technologies not perfectly
substitutable in both electric and non-electric energy sectors.
Firstly, the use of technologies can be subject to some exogenous
caps reflecting, for example, technological bottlenecks. Secondly,
the market share of some technologies can be limited, as is the
case for the wind technologies in order to maintain a stable
electric supply. Last, there are constraints on the expansion and
decline of each technology. The constraints on maximum
expansion (which take the form of a maximum growth rate in
technology use from one period to the other) reflects real-world
frictions for installing new capacity. The maximum decline
constraints limit unrealistic massive abandonment of already-
installed capacities. These constraints smooth the activity levels
of the various technologies and facilitate the coexistence of
technologies with different marginal costs in the electric and non-
electric sectors. Furthermore, they generate irreversibility11 in the
model since pre-2020 technological trajectories constrain post-
2020 trajectories. Note that the coexistence of different vintages
in the final sector implies another type of irreversibility, since pre-
2020 investments impact the possible substitutions between
capital and energy—and between electric and non-electric
energies—after 2020.

The electric and non-electric energy firms are supplied in fossil
fuels by a mining sector which extracts oil, coal and gas. This
extraction requires in situ reserves, as well as composite goods to
10 Nuclear is a special case in the model since there is no explicit modelling of

uranium production.
11 According to Pindyck (2006), ‘‘irreversibility will affect current decisions if

it would constrain future behavior under plausible outcomes’’. Let us take the

example of a clean-but-expensive technology. The constraint on its maximum

expansion (contraction) rate should favor a greater (lower) optimal pre-2020 use

of this technology as a precaution against possible high (low) post-2020 CO2

prices. A similar analysis, with constraints working in opposite directions, can be

made for cheap-but-highly emitting technologies.
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Table 2
Non-fuel cost, heating and emission rates of electric technologies.

Technology Non-fuel costa ($/Mwh) Heating rate (Gj/Mwh) Emission rate (TCO2/MWh)

2005 2050 2005 2050 2005 2050

Hydro 36–40 40 – – 0 0

Remaining oil 20 20 9 – 0.62 –

Remaining nuclear 45–50 50 – – 0 –

New nuclear 80–90 90 – – 0 0

Remaining gas 5.4–6 6 6.6–11.1 – 0.38–0.63 –

New gas 27–30 30 6.2–6.7 5.7 0.35–0.38 0.33

New gas CCSb 61–66 55 6.63–7.05 6.20 0.02 0.02

Remaining coal 22–25 25 9.3–14 – 0.85–1.13 –

Remaining coal CCSb 60–65 65 10.9–18.3 – 0.09–0.12 –

New coal 45–50 50 8.2–8.8 7.7 0.75–0.81 0.7

New coal CCSb 79–86 75 9–9.6 8.6 0.04 0.04

On-shore wind 70–80 80 – – 0 0

Solarc 300–600 60–120 – – 0 0

Biomass 92–102 85 – – 0 0

Sources: IEA (2008a), IEA (2008b) and EIA (2007).

‘‘–’’ separates the lowest and highest regional values.

a Non-fuel costs include investment and operating costs but exclude fuel costs.
b CCS technologies are available from 2015 on in the model.
c Solar technology also embodies off-shore wind, geothermal and ocean energy.

Table 3
Non-fuel cost and emission rates of non-electric technologies.

Technology Non-fuel costa ($/Gj) Emission rate (TCO2/Gj)

2005 2050

Oil for direct use 0 0 0.07

Gas for direct use 5 5 0.06

Coal for direct use 1 1 0.09

Coal for direct use CCSb 4.5 4.5 0.005

Bio-fuels 12 12 0

Synthetic fuelsc 18.3 18.3 0.15

Backstopsd 40 25 0

Sources: IEA (2008a), IEA (2008b), IEA (2007a) and WoodMackenzie (2007).

a Non-fuel costs include investment and operating costs but exclude fuel

costs.
b Coal for direct use CCS is available from 2015 on in the model.
c Synthetic fuels include coal-to-liquid and non-conventional oil.
d The backstop technologies include second-generation bio-fuels and hydro-

gen produced from wind and solar energy.
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pay the extraction costs. All these mineral reserves are finite and
can be exhausted. Moreover, extraction is subject to an upper
limitation in every period. This reflects the complexity of under-
taking new development projects in the oil and gas industry.

All regions are linked together by the international trade12 of
composite goods,13 oil, gas and (after 2020) emission permits.
Transportation costs generate differences between certain regio-
nal prices.

In any period, the emissions of the electric and non-electric
energy sectors must be smaller than the regional quota (i.e., the
cap endowed to the region for the period considered) increased by
the emission permits banked in previous periods and (after 2020)
by the purchase of emissions permits from other regions.
12 No interregional coal trade is taken into account, since every region is

assumed to own sufficient reserves.
13 Because of the absence of distinction between capital and consumption

goods, the perfect mobility of the composite good is equivalent to the perfect

mobility of capital. Therefore, at equilibrium, all regional interest rates are equal.
3.2. Calibration

The exogenous level of effective labor is adjusted so as to
obtain at steady state a level of economic growth close to IEA
(2008b) assumptions. The rates of time preference for utility are
chosen so as to obtain some pre-specified levels of interest rate at
steady state (Manne et al., 1995). The elasticity of substitution s
between non-energy and energy inputs is set14 to 0.5 in every
region. The value share a of capital in the capital–labor input
bundle is set to 0.28. The value share of electricity b in the energy
bundle is set to 0.30. The scaling factors at and bt are calibrated
along a benchmark trajectory derived from institutional projec-
tions and assumed to result from cost minimization in the final
sector. In particular, the gross regional products stem from IMF
(2008) and IEA (2008b), the energy consumptions and prices are
taken from IEA (2008b) reference scenario.

The decay rate of vintages in the final sector is 5% per year. The
maximum annual expansion and contraction rates are set to 10%
for electric and non-electric technologies. The exceptions are
nuclear, with an annual growth rate limited to 2.5%, and non-
electric oil and gas technologies whose annual expansion and
contraction rates are limited to 5% in the OECD regions. In
addition, prior to 2030, the uses of fossil-fuel-fired technologies
are capped. During the first periods, these caps are close to the
level of technology use in IEA (2008b) reference scenario. This
reference scenario is also used to define upper bounds for oil and
gas extraction (in addition to constraints expressed as maximum
production-to-reserves ratios). The costs of electric and non-
electric energy technologies are calibrated from IEA (2007a,
2008a, 2008b). Initial inter-regional cost differences are assumed
to fade away throughout time15 (due to global economic
convergence). As shown by Tables 2 and 3, the cost of certain
new technologies is assumed to decrease throughout time.

Using IEA (2008a), a technical progress improving the heating
rate of the various energy technologies has been introduced. The
base-year regional heating rates have been computed from the
observed fuel consumptions and electricity production. In each
14 This remains in line with the elasticities of substitution of 0.4–0.5 used by

Richels et al. (2007) in MERGE.
15 Except in the case of solar technologies since the cost of solar photovoltaic

energy depends on solar irradiation intensity.



ARTICLE IN PRESS

O. Durand-Lasserve et al. / Energy Policy 38 (2010) 5108–5122 5113
region, the fossil fuel resources are split into 10 different
categories, according to their production cost. The breakdown of
resources is derived from IEA (2008b), EIA (2007), and Wood-
Mackenzie (2007). In dollars per barrel, the cost of oil production
ranges from 10 (Middle East) to 100 (Arctic regions). In dollars per
barrel of oil equivalent, the cost of gas production ranges from 3
to 40. According to the region considered, the production cost of
coal in dollars per barrel of oil equivalent varies from 10 to 20. The
production cost of synthetic fuel is 80$ per barrel. Emissions rates,
that account for the CO2 emissions, are estimated on the basis of
IEA (2008b) projections.

3.3. Computational issues

The model is solved as a non-linear program16 using GAMS and
the CONOPT3 solver. Nevertheless, as the model is not integrable,
there is no means to derive analytically a maximization problem
whose primal and dual solutions would yield the consumptions,
activity levels and prices of the competitive general equilibrium.
However, as in Manne and Olsen (1996), we assume that there
exist some regional weights such that the maximization of the
sum of weighted regional utilities under technological constraints
and the absence of excess demand gives the competitive-general-
equilibrium consumptions, activity levels and prices.17 The
appropriate regional weights are determined iteratively using
the method described by Rutherford (1998).

Another important computational aspect is that albeit the
model is in infinite time the use of purely numerical solution
methods requires a finite-time horizon approximation. Because of
the inter-temporal structure of the model, the approximation of
an infinite-time model by a finite-time model can lead to
undesired effects at the end of the horizon which, in turn,
influence earlier periods of the model. To take this into account, as
suggested by Manne (1970), we apply a multiplier for the last-
period utility and we introduce a constraint for the investment in
the last period so as to mimic the steady state.18
4. Analysis and discussion of results

The general equilibrium is computed for various stochastic
scenarios, characterized by the probability, denoted as p, that the
hard-cap target is enforced in 2020. For the sake of clarity, we
consider in most figures the following five scenarios: a determi-
nistic hard cap (p¼1), a deterministic soft cap (p¼0), equiprob-
able hard and soft caps (p¼0.5), a low-probability hard cap
(p¼0.05), a low-probability soft cap (p¼0.95).

Section 4.1 gives a brief overview of CO2 prices and emissions
trajectories. A simple analytical approach is proposed in Section
4.2 in order to explain the Hotelling rule and risk premia observed
in the model. Furthermore, additional comments on CO2 and
energy prices are made. The impact of uncertainty on technolo-
gical trajectories is discussed in Section 4.3.

4.1. Preliminary comments on CO2 prices and emissions trajectories

Fig. 2 shows that, in all scenarios, the stock of banked permits
is maximum in 2035 in all soft-cap branches and in 2040 in all
16 This model could also be solved as a Mixed Complementary Problem,

including the first-order conditions of each agent’s maximization problem, the

absence of excess demand and the satisfaction of budgets constraints. However,

this formulation would complicate the maintenance of the model, since

Lagrangian’s derivatives are susceptible to change when a constraint is modified.
17 For more insight about Negishi weights, see Ginsburgh and Keyzer (2002).
18 See for instance Lau et al. (2002) for an in-depth presentation of this

method.
hard-cap branches, as cheap abatement options (for instance the
replacement of old coal-fired plants) are exploited until these
dates. During the following periods, the previously banked
permits serve to relax the emissions caps in order to avoid
expensive abatement costs such as those incurred in the non-
electric energy sector.

The CO2 price trajectories in the European Union (correspond-
ing to the world price after 2020) are given by Fig. 3 for various
stochastic scenarios, those in all OECD regions are supplied for the
deterministic and the p¼0.5 scenarios in Table 4. The 2020 CO2

prices in the hard-cap and soft-cap deterministic
scenarios—equal to $64 per ton for the hard cap and between
$28 and $42 per ton for the soft cap—are in line with those
obtained by the EMF-22 models19 (Clarke et al., 2009). In general,
until 2020, the CO2 prices yielded by stochastic scenarios are
bounded by both deterministic prices. Between periods 2025 and
2055, as one would expect, the CO2 price is higher in hard-cap
than in soft-cap branches. In addition, as could also be expected,
prices are higher (lower) in the hard-cap (soft-cap) branches of
the stochastic scenarios than in the hard-cap (soft-cap)
deterministic scenario. After 2055, in the soft-cap branches, the
price sharply increases (with a price peak in 2060) and then
slowly decreases before stabilizing, while in the hard-cap
branches the price decreases and then stabilizes more rapidly.

4.2. Hotelling rule, risk premia and emission-permits markets

convergence

At the general equilibrium of the model, the representative
household of each region implicitly considers every possible
action (such as the banking of emissions permits, capital
investment, or the use of exhaustible natural resources like oil)
as a marginal investment decision. Since uncertain long-run
emission caps are susceptible to generate uncertainty about
economic growth, risk premia may have to be considered by
households when discounting revenues expected from these
actions. To get further insight about this issue, let us note Ci,t

the optimal consumption in region i in every period t (observed at
the general equilibrium of the model) and xt the random cash flow
(expressed in numeraire) generated in every period t by a given
marginal project. This marginal project should be undertaken if it
increases the total discounted utility of region i, i.e., if we have

XT

t ¼ 0

bi,tLi,tEðlogððCi,tþxtÞ=Li,tÞÞZ
XT

t ¼ 0

bi,tLi,tEðlogðCi,t=Li,tÞÞZ0 ð1Þ

By using a first-order Taylor expansion of the left-hand side of (1),
the project is profitable when

XT

t ¼ 0

bi,tLi,tE
xt

Ci,t

� �
Z0 ð2Þ

Eq. (2) can be rewritten as follows:

XT

t ¼ 0

bi,tE
Li,t

Ci,t

� �� �
EðxtÞþcov xt ,

1

Ci,tE
1

Ci,t

� �
0
BB@

1
CCA

0
BB@

1
CCAZ0 ð3Þ
19 More specifically, we here refer to the EMF-22 scenarios with 450 and

550 ppm targets, concentration overshooting and delayed participation of non-

industrialized countries to emissions reduction. Prices obtained in the determi-

nistic scenarios in 2030 ($47 for the soft cap and $105 for the hard cap) are

significantly lower than those proposed by IEA (2008b) at this date for equivalent

targets ($90 for 550 ppm and $180 for 450 ppm), as, unlike IEA (2008b), we have

assumed that all non-OECD regions rejoin the cap-and-trade system for emissions

permits in 2025, that this cap-and-trade system covers all the energy-related CO2

emissions, and that no additional emissions reduction is required after 2050.
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Fig. 2. World CO2 emissions.

Fig. 3. European Union CO2 price.

Table 4
Regional pre-2020 CO2 prices and world post-2020 CO2 price (in dollars per ton) in the deterministic and p¼0.5 scenarios.

Scenario Region Regional prices World price

2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

Deterministic soft cap (p¼0) European Union 40 33 42

North America 25 32 28 37 47 60 76 96 122 155 299

Pacific OECD 49 37 35

Deterministic hard cap (p¼1) European Union 39 49 64

North America 39 49 64 82 105 135 172 217 276 350 246

Pacific OECD 39 49 64

Equiprobable (p¼0.5) European Union 48 35 45 29a 38a 48a 61a 77a 98a 124a 334a

North America 27 35 45

Pacific OECD 47 35 45 86b 111b 142b 181b 228b 290b 368b 237b

a Price in the soft-cap branch.
b Price in the hard-cap branch.
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Table 5
World interest rate and regional consumption growth rates in the p¼0.5 scenario.

2010 2015 2020 2025 2030 2035 2040

Interest ratea Soft cap 5.095 5.182 5.183 5.007

4.875 5.220

Hard cap 5.096 5.148 5.160 4.989

Consumption growth ratea

European Union Soft cap 1.889 1.922 1.870 2.172

2.861 1.886 2.064

Hard cap 1.891 1.889 1.848 2.154

North America Soft cap 2.099 2.132 2.080 2.172

2.763 1.991 2.274

Hard cap 2.101 2.099 2.058 2.154

China Soft cap 6.303 5.393 4.394 3.222

14.797 8.074 7.430

Hard cap 6.305 5.358 4.372 3.204

a In percent, averaged on an annual basis, and calculated with respect to the previous 5-years period in the model.

Table 6
Risk premium on CO2 price in 2025 for the European Union.

Probability of the hard cap (%) 5 20 50 80 95

CO2 risk premium (cents per ton) 0.093 0.186 0.148 0.049 0.039

22 Setting the hard-cap in 2020 leads to more energy conservation in 2025.
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According to (3), the expected cash flow E(xt), adjusted with the
risk premium

�cov xt ,
1

Ci,tE
1

Ci,t

� �
0
BB@

1
CCA

is discounted at the social discount factor bi,tEðLi,t=Ci,tÞ.
Let us note that whatever the stochastic scenario considered in

the model, prices (and therefore cash flows) are certain until 2020
(period 3 of the model). Consequently, let us first consider either a
deterministic scenario or a stochastic scenario with tr2020, and
let gi,t be the growth rate of per-capita consumption in region i

from period t�1 to period t, with ðCi,t=Li,tÞ=ðCi,t�1=Li,t�1Þ ¼ egi,t .
Since there is no uncertainty, the social discount factor from
period t�1 to period t is then

bi,t�1

Li,t�1

Ci,t�1

� �

bi,t

Li,t

Ci,t

� � ¼ eri,t þgi,t ð4Þ

In addition, the risk premium is equal to 0. Eq. (4) is a standard
result20: ri,tþgi,t is the social discount rate of region i from t�1 to t.
This social discount rate, which is the rate of interest of the economy,
is also equal to the marginal productivity of capital (Ramsey’s rule).
This equality is ensured by considering a marginal project consisting
in consuming one less dollar in t�1 to invest this dollar in capital
during one period. Furthermore, as long as banking21 is profitable, one
should always consider the marginal project consisting in banking
one more ton of CO2 in t�1 in order to release one additional ton in t.
By applying (3) to this marginal project, and by using (4), banking in
t�1 should stop when

Pco2,t�1 ¼ Pco2,te
�ri,t�gi,t ð5Þ

Eq. (5) is the Hotelling (1931) rule, which is for instance perfectly
followed by the CO2 price in the European Union from 2010 to
2055—after this date, banking is no longer possible—in the
deterministic hard-cap scenario (as shown by Fig. 3 and Table 4). In
the deterministic soft-cap scenario, the world CO2 price follows the
Hotelling rule from 2025 to 2055 since there is banking (and use of
20 Note that the logarithmic utility function considered here has a relative risk

aversion equal to 1.
21 Since there is no inter-temporal emissions ‘‘borrowing’’ allowed in the

model, the CO2 price can decrease or increase at a rate lower than the economy’s

interest rate during certain periods.
banked permits) during the whole period at the world level, as shown
by Fig. 2.

Let us now focus on the stochastic scenarios where the setting
of caps at the end of the 2020 period represents an external
random shock susceptible to impact the consumption in the
various regions. However as shown by Table 5, this shock has a
very small effect on consumption. For region i, the risk premium
to be applied to the CO2 price expected in 2025 is equal to

�cov Pco2,2025,
1

Ci,2025E
1

Ci,2025

� �
0
BB@

1
CCA

By applying (3), banking should stop in 2020 when we have

Pco2,2020 ¼

bi,2025E
Li,2025

Ci,2025

� �

bi,2020

Li,2020

Ci,2020

� �

� EðPco2,2025Þþcov Pco2,2025,
1

Ci,2025E
1

Ci,2025

� �
0
BB@

1
CCA

0
BB@

1
CCA

ð6Þ

For all regions and stochastic scenarios, this risk premium is
positive22 but extremely small (always less than 0.2 cents per ton
of CO2 for the European Union as indicated in Table 6). This is an
illustration of the fable of the elephant and the rabbit popularized
by Hogan and Manne (1977), i.e., the regional economies are so
important that the emissions caps have little effect on
consumption.23 As a result, the expected value of the CO2 price
Since energy and capital are complementary inputs, this (slightly) reduces the

marginal productivity of capital (with an interest rate of 5.148% instead of 5.182%

in Table 5). Households therefore invest less and consume more in 2025 (CO2

prices and consumption are positively correlated). However, they consume less in

the following periods as shown by Table 5.
23 This statement has nevertheless to be qualified as both scenarios compared

here require a serious curb in emissions. A comparison between a business-as-
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Fig. 4. Expected 2020–2025 CO2 price increase and stock of banked emissions permits in 2020 in the European Union, with respect to the hard-cap probability.
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almost follows a Hotelling law between 2020 and 2025. For
instance, if we consider the p¼0.5 scenario, from Table 5 let us
approximate the effective social discount factor from 2020 to
2025 as follows:

bi,2025

bi,2020

E
Li,2025

Ci,2025

� �

Li,2020

Ci,2020

� � C1:05095

As expected, the prices given by Table 4 satisfy (6) since we have

45C
ð0:5� 29Þþð0:5� 86Þ

ð1:05095Þ5

Fig. 4 shows that emissions permits are banked until 2020 in the
European Union when pZ0:4. Consistently, the expected CO2

price increases at the social discount rate (economy’s rate of
interest) between 2020 and 2025. In North America, emissions
permits are banked before 2020 even in the deterministic soft-cap
scenario (p¼0) because of relatively high pre-2020 emissions
quotas and cheap abatement opportunities. In the Pacific OECD
region, emissions permits are banked until 2020 when pZ0:2.
Therefore, when pZ0:4 all the OECD regions bank emissions
permits prior to 2025. As illustrated by Table 4, for p¼0.5, we
then have a convergence of pre-2020 CO2 prices in all OECD
regions (although the inter-regional trade of emissions permits
does not yet exist). This convergence of emissions-permits
markets is backwardly induced by the Hotelling rule (from a
unique world price in 2025). Fig. 3 shows that the expected value
of CO2 price follows this Hotelling rule until 2055 in all scenarios
(and along each branch of every scenario).

For oil and gas, the observation24 of the Hotelling rule is
hindered by constraints imposed on the production of these
natural resources (especially maximum production-to-reserve
ratios) that limit inter-temporal arbitrage in extraction decisions.
Trajectories of price and consumption for oil, gas, coal, and power
in various scenarios are provided by Appendix A.
(footnote continued)

usual and the hard-cap scenario would probably yield a much bigger impact on

consumption.
24 Note that, for oil and gas, the Hotelling rule corresponds to a reserve-value

increase at the economy’s interest rate (if the reserve considered is exhausted at

the end of the model’s horizon).
4.3. Impact of uncertainty on technological trajectories

Table 7 gives the obtained energy mix in periods 2020 and
2050, for the deterministic and equiprobable (p¼0.5) scenarios, at
the world scale. Tables B1–B3 are specific to the European Union,
North America and China respectively.

Let us briefly comment on the technological trajectories obtained
in deterministic scenarios. Until 2020, reduction in emissions is
achieved by decreasing the carbon intensity in both electric and
non-electric sectors. In the electric sector, the replacement of coal
technologies by nuclear, gas and biomass generation is more
pronounced in the hard-cap than in the soft-cap scenario. As a
result, in 2020, only 20% of electricity is produced with coal without
CCS in the hard-cap scenario, whereas 31% of electricity is produced
with coal without CCS in the soft-cap scenario. The non-electric
energy sector substitutes gas for oil. As a consequence, in 2020, oil
represents less than 50% of non-electric energy production in both
scenarios, while it represented 57% in 2005. After 2020, the carbon
intensity keeps on decreasing in both energy sectors. In an
expanding electric sector, nuclear, coal and gas CCS, wind, solar
and biomass replace without-CCS coal and gas generation (which is
used for less than 3% of electricity production in 2050). Due to a
lower gas price (see Fig. A3), gas with CCS is more developed in the
hard-cap than in the soft-cap scenario (at the detriment of coal CCS).
In the non-electric sector, gas and backstop technologies (hydrogen
and second-generation bio-fuels) substitute for oil and coal. In
addition, electricity substitutes for non-electric energy as pre-2020
technological trajectories favor the expansion of new technologies
after 2020 in the electric sector. This is not the case in the
non-electric energy sector which undergoes the constraints
on gas production and where the (expensive) backstop technologies
are not competitive prior to 2020. This explains why, after 2020,
electricity consumption grows faster than non-electric energy
consumption. This evolution is particularly pronounced in the
hard-cap scenario where, in 2050, there is more electricity
consumed than in the soft-cap scenario (35.8 TkWh instead of
34.9 TkWh).

In the hard-cap deterministic scenario, the severity of the
emissions target in the intermediate and long runs justifies early
(pre-2060) and massive abatement efforts, especially through
non-electric energy conservation and development of non-electric
backstop technologies (see Fig. 6). As a result, when banking is no
longer possible, in 2060, the deployed technologies are
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Table 7
Technologies used at the world level in the deterministic and equiprobable scenarios.

Deterministic Equiprobable

SC HC SC HC

2005 2020 2050 2020 2050 2020 2050 2050

Electricity production

hydro (%) 16 19 17 20 17 19 17 17

Remaining nuclear (%) 15 6 0 6 0 6 0 0

New nuclear (%) 0 18 35 20 35 20 35 35

Remaining oil (%) 6 1 0 1 0 1 0 0

Remaining gas (%) 20 5 0 6 0 6 0 0

New gas (%) 0 10 2 14 1 12 3 1

New gas CCS (%) 0 0 2 0 6 0 1 6

Remaining coal (%) 41 13 0 9 0 12 0 0

Remaining coal CCS (%) 0 0 0 2 0 1 0 0

New coal (%) 0 18 1 11 0 15 1 0

New coal CCS (%) 0 1 13 1 7 1 13 7

On-shore wind (%) 1 8 20 8 20 8 20 20

Solar (%) 0 0 8 0 10 0 8 10

Biomass (%) 1 1 1 2 4 1 1 4

Total (TkWh) 18.5 24.5 34.9 23.6 35.8 24.03 34.84 35.92

Non-electric energy production

Bio-fuels (%) 0 1 2 1 3 1 2 3

Synthetic fuels (%) 2 0 0 0 0 0 0 0

Coal for direct use (%) 17 18 13 17 10 17 13 8

Coal for direct use CCS (%) 0 1 6 2 7 1 6 7

Non-electric backstop (%) 0 0 3 0 13 0 3 16

Oil for direct use (%) 57 48 37 49 30 48 37 29

Gas for direct use (%) 24 33 38 31 38 32 39 37

Total (million tons of oil equivalent) 5400 7247 8550 7089 7880 7186 8644 7835

SC (HC) means in the soft-cap (hard-cap) branch.

Fig. 5. Electricity production from (remaining and new) coal without CCS and from (coal and gas) CCS technologies.
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well-adapted to the long-run emissions target, which makes
possible a decrease in CO2 price as illustrated by Fig. 3.

In the soft-cap deterministic scenario, emissions targets in the
intermediate and long runs do not necessitate massive pre-2060
abatement efforts, especially regarding non-electric energy con-
servation and backstop technologies as shown by Fig. 6. Therefore,
when banking is no longer possible, in 2060, a reduction in non-
electric energy consumption is necessary (see Fig. 6). This results
in a high marginal abatement cost explaining the important
upward disruption of CO2 price in 2060 (with a price peak at
almost $300 per ton in Table 4).
The uncertainty about the long-run emissions targets has a
significant impact on the technological trajectories of the energy
firms. Especially, the more probable the hard cap, the greater the
accumulated stock of banked emissions permits in period 2020, as
Fig. 4 shows for the European Union. As one could expect, this
higher accumulation of banked permits results from a higher
expansion (contraction) of less-emitting (more-emitting)
technologies prior to 2020. For instance, Fig. 5 provides an
illustration of this effect for highly emitting coal-fired power
generation (without CCS) which is less used when the hard-cap
probability is high.
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Fig. 6. Total non-electric energy production and non-electric production from the backstop technologies.
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Let us now turn to the post-2020 periods for which the model
yields non-trivial results. Let us first consider the hard-cap branches
of stochastic scenarios. Since the setting of the hard cap was initially
considered as a mere possibility, the stock of banked permits
available in 2025 is lower than that in the deterministic hard-cap
scenario. This results in a 2025 CO2 price higher than in the hard-cap
deterministic scenario. However, to compensate for this situation,
until 2055 clean technologies expand faster in the stochastic
scenarios than in the deterministic one. More specifically, Fig. 6
shows that there are more non-electric energy conservation and a
grater deployment of non-electric backstop technologies. As a
consequence, in 2060, when banking is no longer possible, the CO2

price is lower in the hard-cap branches of stochastic scenarios than
in the deterministic hard-cap scenario. Consistently, this price
increases with the probability of the hard-cap target.

Let us now consider the soft-cap branches of stochastic scenarios.
In each region, when the soft cap is set at the end of 2020, a stock of
banked emissions permits has been previously accumulated as a
precaution against a possible hard-cap (at least, if the hard-cap
probability was sufficiently high, for instance as Fig. 4 shows for the
European Union). Using this stock of banked permits results in
differing the post-2020 deployment of low-emitting technologies
(along with a lower CO2 price until 2055 in soft-cap branches of
stochastic scenarios). Especially, Fig. 6 shows that there is more non-
electric energy consumed in soft-cap branches of stochastic scenarios
than in the deterministic soft-cap scenario. Consequently, when
permits are banked in 2020, this results in a 2060 CO2 price peak
higher than that observed in the deterministic soft-cap scenario. This
price peak increases with the probability of the hard-cap target.
5. Conclusion

Our simulations show that the uncertainty about long-run
emissions targets significantly affects the energy transition at
both global and regional scales, as well as CO2 and energy prices.
A higher probability for the setting of the hard-cap target at the
end of period 2020 leads to more abatement, and therefore more
banking, until 2020. In brief, in the electric sector, prior to 2020
coal without CCS declines faster, for the benefit of nuclear and gas
technologies. As a higher hard-cap probability leads to a higher
stock of banked permits at the start of period 2025, fewer
emissions reductions are required in the subsequent periods.
More specifically, in all branches, there is less energy conservation
in the non-electric sector and, in hard-cap branches, a lower
penetration of non-electric backstop technologies. As a result, the
technologies deployed in 2060 (when banking is no longer
possible) are not fully adjusted to the long-run emissions
stabilization targets. Thus, in soft-cap branches of stochastic
scenarios, the initial anticipation of a probable hard-cap target
results in a 2060 price peak higher than that obtained in the
deterministic soft-cap scenario. In addition, since pre-2020 CO2

prices are sensitive to the hard-cap probability, they reveal
information about agents’ belief on this probability.

Moreover, a pre-2020 banking of emissions permits occurs for
a hard-cap probability greater or equal to 0.4 (0.2) in the
European Union (Pacific OECD region), while in North America
banking occurs in all scenarios. In every region where such a
banking takes place, the regional CO2 price follows a Hotelling
rule with a risk premium between 2020 and 2025. Since the long-
run emissions targets have a negligible impact on regional
consumptions, this risk premium is very small.

Since a pre-2020 banking occurs in all regions when the hard-cap
probability is greater than 0.4, the common belief in a single world
CO2 price from 2025 on then leads to a convergence of CO2 prices in
OECD regions prior to 2020, even if inter-regional trade of emissions
permits does not yet exist. For oil and gas, the observation of the
Hotelling rule is hindered by constraints imposed on their produc-
tion (that limit inter-temporal arbitrage in extraction decisions).

Our approach is of course subject to a given number of
limitations. One of them relates to the information structure
considered. In the model, agents’ belief is not assumed to evolve
trough time, as information is fully revealed in 2020. Taking into
account a more progressive revelation of information on emis-
sions targets would enrich the model and perhaps significantly
influence its results.
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Fig. A1. World coal consumption.

Fig. A2. World oil price and consumption.

Fig. A3. Gas price in the European Union and world gas consumption.
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Fig. A4. Total electric consumption in OECD and non-OECD regions and power prices in the European Union and China.

Table B1
Technologies used in the European Union for the deterministic and equiprobable scenarios.

Deterministic Equiprobable

SC HC SC HC

2005 2020 2050 2020 2050 2020 2050 2050

Electricity production

Hydro (%) 9 12 12 12 11 12 12 11

Remaining nuclear (%) 30 15 0 15 0 15 0 0

New nuclear (%) 0 35 63 35 64 35 63 64

Remaining oil (%) 4 1 0 1 0 1 0 0

Remaining gas (%) 20 10 0 10 0 10 0 0

New gas (%) 0 8 1 7 0 8 1 0

New gas CCS (%) 0 0 0 0 5 0 0 5

Remaining coal (%) 31 4 0 1 0 3 0 0

Remaining coal CCS (%) 0 0 4 3 0 0 0 0

New coal (%) 0 0 0 0 0 0 0 0

New coal CCS (%) 0 0 0 0 0 0 4 0

On-shore wind (%) 2 15 20 15 20 15 20 20

Solar (%) 0 0 0 0 0 0 0 0

Biomass (%) 3 1 0 1 0 1 0 0

Total (TkWh) 3.29 3.32 3.69 3.30 3.84 3.29 3.66 3.85

Non-electric energy production

Bio-fuels (%) 1 2 5 2 6 2 5 6

Synthetic fuels (%) 0 0 0 0 0 0 0 0

Coal for direct use (%) 8 6 5 5 1 5 5 1

Coal for direct use CCS (%) 0 1 3 2 3 2 3 3

Non-electric backstop (%) 0 0 3 0 10 0 3 18

Oil for direct use (%) 60 71 57 77 52 77 54 49

Gas for direct use (%) 31 20 27 14 28 14 30 24

Total (million tons of oil equivalent) 946 995 894 970 828 987 903 826

SC (HC) means in the soft-cap (hard-cap) branch.
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Appendix A. Consumption and price of energy
commodities

Figs. A1–A4 show the consumption and price of energy
commodities.
Appendix B. Technologies used in the deterministic and
equiprobable scenarios

Tables B1–B3 are specific to the European Union, North
America and China respectively.
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Table B2
Technologies used in North America for the deterministic and equiprobable scenarios.

Deterministic Equiprobable

SC HC SC HC

2005 2020 2050 2020 2050 2020 2050 2050

Electricity production

Hydro (%) 13 13 10 14 10 13 10 11

Remaining nuclear (%) 18 9 0 9 0 9 0 0

New nuclear (%) 0 30 65 31 65 30 65 64

Remaining oil (%) 3 1 0 1 0 1 0 0

Remaining gas (%) 19 7 0 6 0 7 0 0

New gas (%) 0 10 1 12 0 8 1 0

New gas CCS (%) 0 0 0 0 5 0 0 5

Remaining coal (%) 44 21 0 9 0 20 0 0

Remaining coal CCS (%) 0 0 0 3 0 1 0 0

New coal (%) 0 0 0 0 0 0 0 0

New coal CCS (%) 0 0 4 1 0 0 4 0

On-shore wind (%) 1 9 20 9 20 9 20 20

Solar (%) 0 0 0 0 0 0 0 0

Biomass (%) 2 0 0 6 0 2 0 0

Total (TkWh) 5.10 5.35 7.10 5.21 7.31 5.30 7.05 3.85

Non-electric energy production

Bio-fuels (%) 1 2 4 2 5 2 4 5

Synthetic fuels (%) 4 1 0 1 0 1 0 0

Coal for direct use (%) 4 4 3 3 2 3 3 2

Coal for direct use CCS (%) 0 0 1 1 1 1 1 1

Non-electric backstop (%) 0 0 4 0 16 0 4 16

Oil for direct use (%) 63 52 21 49 12 48 22 12

Gas for direct use (%) 28 41 66 43 64 45 66 24

Total (million tons of oil equivalent) 1452 1576 1679 1517 1548 1551 1697 1542

SC (HC) means in the soft-cap (hard-cap) branch.

Table B3
Technologies used in China for the deterministic and equiprobable scenarios.

Deterministic Equiprobable

SC HC SC HC

2005 2020 2050 2020 2050 2020 2050 2050

Electricity production

Hydro (%) 15 19 18 20 18 20 18 18

Remaining nuclear (%) 2 0 0 0 0 0 0 0

New nuclear (%) 0 5 16 6 15 16 16 15

Remaining oil (%) 2 0 0 0 0 0 0 0

Remaining gas (%) 1 0 0 0 0 0 0 0

New gas (%) 0 0 0 4 1 3 1 1

New gas CCS (%) 0 0 0 1 1 0 0 1

Remaining coal (%) 80 20 0 20 0 19 0 0

Remaining coal CCS (%) 0 0 0 2 0 1 0 0

New coal (%) 0 47 3 38 1 42 3 1

New coal CCS (%) 0 2 27 2 17 2 27 17

On-shore wind (%) 0 4 20 5 20 5 20 20

Solar (%) 0 0 13 0 19 0 13 19

Biomass (%) 0 1 3 1 8 1 3 8

Total (TkWh) 2.71 5.41 8.03 5.00 8.07 5.21 8.02 8.13

Non-electric energy production

Bio-fuels (%) 0 0 1 0 1 0 1 1

Synthetic fuels (%) 0 0 0 0 0 0 0 0

Coal for direct use (%) 61 50 34 50 35 49 34 29

Coal for direct use CCS (%) 0 1 17 2 18 2 17 19

Non-electric backstop (%) 0 0 5 0 19 0 5 26

Oil for direct use (%) 35 43 41 45 25 44 41 24

Gas for direct use (%) 5 5 3 3 2 3 2 2

Total (million tons of oil equivalent) 786 1522 1956 1511 1805 1518 1978 1788

SC (HC) means in the soft-cap (hard-cap) branch.
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