UNCERTAIN OUTCOMES AND CLIMATE CHANGE POLICY

Robert S. Pindyck

Massachusetts Institute of Technology

FEEM June 3, 2010

• Uncertainty is at the heart of climate change policy:

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.
 - GHG concentrations decay very slowly.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.
 - GHG concentrations decay very slowly.
 - Abatement policy imposes sunk costs.

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.
 - GHG concentrations decay very slowly.
 - Abatement policy imposes sunk costs.
- Long time horizon around 100 years. How to discount?

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.
 - GHG concentrations decay very slowly.
 - Abatement policy imposes sunk costs.
- Long time horizon around 100 years. How to discount?
- What does uncertainty, and especially low-probability extreme outcomes, imply for climate change policy?

- Uncertainty is at the heart of climate change policy:
 - Uncertainty over underlying physical/ecological processes.
 - Uncertainty over economic impact of climate change, including possible adaptation.
 - Uncertainty over technological changes that might reduce impacts or costs of abatement.
- Important irreversibilities, raising issues of waiting/learning.
 - GHG concentrations decay very slowly.
 - Abatement policy imposes sunk costs.
- Long time horizon around 100 years. How to discount?
- What does uncertainty, and especially low-probability extreme outcomes, imply for climate change policy?
- Willingness to Pay (WTP): What fraction of current and future consumption would society give up to keep ΔT low?

- Weitzman (2009): Thick tails.
 - Suppose $\Delta \mathcal{T}$ has a some distribution with unknown variance.

- Suppose ΔT has a some distribution with unknown variance.
- Bayesian updating of variance estimate.

- Suppose ΔT has a some distribution with unknown variance.
- Bayesian updating of variance estimate.
- Then posterior-predictive distribution has thick tails. (No MGF, tails \rightarrow 0 more slowly than exponentially.)

- Weitzman (2009): Thick tails.
 - Suppose ΔT has a some distribution with unknown variance.
 - Bayesian updating of variance estimate.
 - Then posterior-predictive distribution has thick tails. (No MGF, tails \rightarrow 0 more slowly than exponentially.)
 - With power utility function (e.g., CRRA), marginal utility of consumption $\rightarrow \infty$ as C $\rightarrow 0$. Implies WTP is 100%.

- Weitzman (2009): Thick tails.
 - Suppose ΔT has a some distribution with unknown variance.
 - Bayesian updating of variance estimate.
 - Then posterior-predictive distribution has thick tails. (No MGF, tails \rightarrow 0 more slowly than exponentially.)
 - With power utility function (e.g., CRRA), marginal utility of consumption $\rightarrow \infty$ as C \rightarrow 0. Implies WTP is 100%.
- Shows limitations of expected cost-benefit analysis, but not much guidance for policy.

- Suppose ΔT has a some distribution with unknown variance.
- Bayesian updating of variance estimate.
- Then posterior-predictive distribution has thick tails. (No MGF, tails \rightarrow 0 more slowly than exponentially.)
- With power utility function (e.g., CRRA), marginal utility of consumption → ∞ as C → 0. Implies WTP is 100%.
- Shows limitations of expected cost-benefit analysis, but not much guidance for policy.
- Integrated Assessment Models (IAMs): use ad hoc loss functions and focus on "most likely" scenarios.

This Study

• Uncertainty over ΔT and economic impact of ΔT .

This Study

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta {\cal T}$ and its impact.

This Study

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.
- Unlike IAMs, I relate ΔT to growth rate, not level, of real GDP.

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.
- Unlike IAMs, I relate ΔT to growth rate, not level, of real GDP.
- I make loss function stochastic. Key parameter unknown.

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.
- Unlike IAMs, I relate ΔT to growth rate, not level, of real GDP.
- I make loss function stochastic. Key parameter unknown.
 - Treat this the same way as climate sensitivity.

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.
- Unlike IAMs, I relate ΔT to growth rate, not level, of real GDP.
- I make loss function stochastic. Key parameter unknown.
 - Treat this the same way as climate sensitivity.
 - As with ΔT , displaced gamma distribution. Use recent economic impact studies (IAMs) to calibrate.

- Uncertainty over ΔT and economic impact of ΔT .
- I use current "state of knowledge" for distributions of $\Delta \mathcal{T}$ and its impact.
- Displaced gamma distribution for ΔT . Fit to IPCC (2007) summary of studies.
- Unlike IAMs, I relate ΔT to growth rate, not level, of real GDP.
- I make loss function stochastic. Key parameter unknown.
 - Treat this the same way as climate sensitivity.
 - As with ΔT , displaced gamma distribution. Use recent economic impact studies (IAMs) to calibrate.
- I ignore irreversibilities. Companion study.

- Background and overview of methodology.
- Uncertainty over climate sensitivity, use of gamma distribution.
- Economic impact of ΔT .
 - Choice of loss function.
 - Treatment of uncertainty.
- Willingness to pay to keep (uncertain) $\Delta T \leq \tau$.
 - General formulation.
 - No uncertainty.
 - Only uncertainty over ΔT .
- Policy implications and conclusions.

• Economic analyses usually built around 5 elements:

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.
 - 2 Project resulting ΔT over time (globally or regionally).

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.
 - 2 Project resulting ΔT over time (globally or regionally).
 - Translate ΔT into lost GDP and consumption (globally or regionally). This is most speculative part, because hard to estimate potential adaptation.

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.
 - 2 Project resulting ΔT over time (globally or regionally).
 - Translate ΔT into lost GDP and consumption (globally or regionally). This is most speculative part, because hard to estimate potential adaptation.
 - Estimate current and future costs of abating GHG emissions by various amounts.

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.
 - 2 Project resulting ΔT over time (globally or regionally).
 - Translate ΔT into lost GDP and consumption (globally or regionally). This is most speculative part, because hard to estimate potential adaptation.
 - Estimate current and future costs of abating GHG emissions by various amounts.
 - Assumptions about social utility, pure rate of time preference, and but-for growth, for intertemporal comparisons.

- Economic analyses usually built around 5 elements:
 - Project future emissions (of CO₂e composite or individual GHGs) under BAU and abatement scenarios, and resulting atmospheric CO₂e.
 - 2 Project resulting ΔT over time (globally or regionally).
 - Translate ΔT into lost GDP and consumption (globally or regionally). This is most speculative part, because hard to estimate potential adaptation.
 - Estimate current and future costs of abating GHG emissions by various amounts.
 - Assumptions about social utility, pure rate of time preference, and but-for growth, for intertemporal comparisons.
- For each step, substantial uncertainty.

• Apart from *Stern Review* (low discount rate, low abatement costs, high economic impact), most studies suggest low to moderate abatement now (or waiting).
- Apart from *Stern Review* (low discount rate, low abatement costs, high economic impact), most studies suggest low to moderate abatement now (or waiting).
- Increasing rate of abatement is dynamically efficient, allows for learning about ΔT and its impact, and allows for technological change (e.g., lower abatement costs).

- Apart from *Stern Review* (low discount rate, low abatement costs, high economic impact), most studies suggest low to moderate abatement now (or waiting).
- Increasing rate of abatement is dynamically efficient, allows for learning about ΔT and its impact, and allows for technological change (e.g., lower abatement costs).
- If you believe ΔT is within IPCC's 90% confidence interval, hard to justify stringent abatement now.

- Apart from *Stern Review* (low discount rate, low abatement costs, high economic impact), most studies suggest low to moderate abatement now (or waiting).
- Increasing rate of abatement is dynamically efficient, allows for learning about ΔT and its impact, and allows for technological change (e.g., lower abatement costs).
- If you believe ΔT is within IPCC's 90% confidence interval, hard to justify stringent abatement now.
- Maybe not: Might tails of the distributions for ΔT and/or impact — possibility of extreme outcomes — support stringent abatement?

• I avoid dealing with abatement costs and GHG emissions and accumulation by estimating WTP, and focusing on uncertainty over ΔT and economic impact.

- I avoid dealing with abatement costs and GHG emissions and accumulation by estimating WTP, and focusing on uncertainty over ΔT and economic impact.
- Temperature Change. Use IPCC survey of 22 studies of climate sensitivity.

- I avoid dealing with abatement costs and GHG emissions and accumulation by estimating WTP, and focusing on uncertainty over ΔT and economic impact.
- Temperature Change. Use IPCC survey of 22 studies of climate sensitivity.
 - Fit displaced gamma distribution for ΔT_H , H = 100 years.

- I avoid dealing with abatement costs and GHG emissions and accumulation by estimating WTP, and focusing on uncertainty over ΔT and economic impact.
- Temperature Change. Use IPCC survey of 22 studies of climate sensitivity.
 - Fit displaced gamma distribution for ΔT_H , H = 100 years.
 - Studies too "conservative?" Can re-fit to subset with larger tails; can change variance or skewness of base distribution.

- I avoid dealing with abatement costs and GHG emissions and accumulation by estimating WTP, and focusing on uncertainty over ΔT and economic impact.
- Temperature Change. Use IPCC survey of 22 studies of climate sensitivity.
 - Fit displaced gamma distribution for ΔT_H , H = 100 years.
 - Studies too "conservative?" Can re-fit to subset with larger tails; can change variance or skewness of base distribution.
 - I assume *immediate doubling* of GHG concentration, $\Delta T_t \rightarrow 2\Delta T_H$ as t gets large:

$$\Delta T_t = 2\Delta T_H [1 - (1/2)^{t/H}]$$

• Economic Impact. ΔT reduces real growth rate.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.
 - Resources to counter effects (floods, health, etc.) reduce those for R&D and investment.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.
 - Resources to counter effects (floods, health, etc.) reduce those for R&D and investment.
 - Empirical support: Dell et al (2008, 2009).

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.
 - Resources to counter effects (floods, health, etc.) reduce those for R&D and investment.
 - Empirical support: Dell et al (2008, 2009).
 - I use linear relation: $g_t = g_0 \gamma \Delta T_t$.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.
 - Resources to counter effects (floods, health, etc.) reduce those for R&D and investment.
 - Empirical support: Dell et al (2008, 2009).
 - I use linear relation: $g_t = g_0 \gamma \Delta T_t$.
 - Use IAMs to get dist. for β in $L(\Delta T) = e^{-\beta(\Delta T)^2}$ at H = 100.

- Economic Impact. ΔT reduces real growth rate.
 - Existing studies: $C_t = L(\Delta T_t)C_t^*$, where C_t^* is "but-for" C with no warming, L(0) = 1, and L' < 0.
 - Expect ΔT to reduce growth rate of GDP and C, not level.
 - Impact of ΔT likely to be permanent.
 - Resources to counter effects (floods, health, etc.) reduce those for R&D and investment.
 - Empirical support: Dell et al (2008, 2009).
 - I use linear relation: $g_t = g_0 \gamma \Delta T_t$.
 - Use IAMs to get dist. for β in $L(\Delta T) = e^{-\beta(\Delta T)^2}$ at H = 100.
 - Translate into distribution for γ . Normalizing $C_0 = 1$,

$$C_{t} = e^{\int_{0}^{t} g(s)ds} = e^{-\frac{2\gamma H\Delta T_{H}}{\ln(1/2)} + (g_{0} - 2\gamma\Delta T_{H})t + \frac{2\gamma H\Delta T_{H}}{\ln(1/2)}(1/2)^{t/H}}$$

Then $e^{-\frac{2\gamma H\Delta T_H}{\ln(1/2)} + (g_0 - 2\gamma\Delta T_H)H + \frac{\gamma H\Delta T_H}{\ln(1/2)}} = e^{g_0H - \beta(\Delta T)^2}$, and $\gamma = 1.79\beta\Delta T_H/H$.

Example of Economic Impact

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

June 2010 10 / 37

Willingness to Pay

• Willingness to Pay. Posit CRRA utility (for entire world!):

$$U(C_t) = C_t^{1-\eta} / (1-\eta)$$

Willingness to Pay

• Willingness to Pay. Posit CRRA utility (for entire world!):

$$U(C_t) = C_t^{1-\eta} / (1-\eta)$$

Calculate w^{*}(τ): fraction of current and future C_t society would sacrifice to ensure ΔT_H ≤ τ.

• Willingness to Pay. Posit CRRA utility (for entire world!):

$$U(C_t) = C_t^{1-\eta} / (1-\eta)$$

- Calculate w^{*}(τ): fraction of current and future C_t society would sacrifice to ensure ΔT_H ≤ τ.
- If we sacrifice $w(\tau)$ of $\{C_t\}$ so $\Delta T_H \leq \tau$, welfare is:

$$W_{1}(\tau) = \frac{[1 - w(\tau)]^{1 - \eta}}{1 - \eta} \mathcal{E}_{0,\tau} \int_{0}^{\infty} e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where $\rho = (\eta - 1)(g_0 - 2\gamma\Delta T_H) + \delta$, $\omega = 2(\eta - 1)\gamma H\Delta T_H / \ln(1/2)$, and $\mathcal{E}_{0,\tau}$ is expectation over ΔT_H and γ conditional on $\Delta T_H \leq \tau$. • If no action is taken, welfare is:

$$W_2 = \frac{1}{1-\eta} \mathcal{E}_0 \int_0^\infty e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where \mathcal{E}_0 is expectation with ΔT_H unconstrained.

• If no action is taken, welfare is:

$$W_2 = \frac{1}{1-\eta} \mathcal{E}_0 \int_0^\infty e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where \mathcal{E}_0 is expectation with ΔT_H unconstrained. • WTP is value $w^*(\tau)$ that equates $W_1(\tau)$ and W_2 . • If no action is taken, welfare is:

$$W_2 = \frac{1}{1-\eta} \mathcal{E}_0 \int_0^\infty e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where \mathcal{E}_0 is expectation with ΔT_H unconstrained.

- WTP is value $w^*(\tau)$ that equates $W_1(\tau)$ and W_2 .
- Question: Do fitted distributions for ΔT_H and γ , along with "reasonable" values for δ , η and g_0 , yield $w^*(\tau) > 2$ or 3% for τ around 2 or 3°C?

• Fit a displaced gamma distribution:

$$f(x; r, \lambda, \theta) = \frac{\lambda^r}{\Gamma(r)} (x - \theta)^2 e^{-\lambda(x - \theta)}$$
, $x \ge \theta$

where $\Gamma(r)$ is Gamma function:

$$\Gamma(r) = \int_0^\infty s^{r-1} e^{-s} ds$$

• Here θ is the displacement parameter. Moment generating function is

$$M_{x}(t) = \mathcal{E}(e^{tx}) = \left(\frac{\lambda}{\lambda - t}\right)^{\prime} e^{t\theta}$$

• Want climate sensitivity, i.e., Δ*T* resulting from doubling of atmospheric CO₂e.

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.

- Want climate sensitivity, i.e., Δ*T* resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \ge$ 4.5°C

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \geq 4.5^\circ {\rm C}$
 - 5% probability of $\Delta T \ge 7.0^{\circ}$ C

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \ge 4.5^\circ {
 m C}$
 - 5% probability of $\Delta T \ge 7.0^{\circ} C$
 - 1% probability of $\Delta T \ge 10.0^\circ {
 m C}$

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \ge 4.5^{\circ} {
 m C}$
 - 5% probability of $\Delta T \ge 7.0^{\circ} \text{C}$
 - 1% probability of $\Delta T \geq 10.0^\circ {\rm C}$
- Fitting distribution to mean, 5%, and 1% points gives r = 3.8, $\lambda = 0.92$, and $\theta = -1.13$.

- Want climate sensitivity, i.e., ΔT resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \ge 4.5^{\circ} \text{C}$
 - 5% probability of $\Delta T \ge 7.0^{\circ} \text{C}$
 - 1% probability of $\Delta T \ge 10.0^\circ {
 m C}$
- Fitting distribution to mean, 5%, and 1% points gives r = 3.8, $\lambda = 0.92$, and $\theta = -1.13$.
- Implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C.

- Want climate sensitivity, i.e., Δ*T* resulting from doubling of atmospheric CO₂e.
- IPCC (2007) summary of 22 studies puts $\mathcal{E}(\Delta T) = 3.0^{\circ}$ C.
- IPCC puts studies in standardized form. Can infer:
 - 17% probability of $\Delta T \ge 4.5^{\circ} {
 m C}$
 - 5% probability of $\Delta T \ge 7.0^{\circ}$ C
 - 1% probability of $\Delta T \ge 10.0^\circ {
 m C}$
- Fitting distribution to mean, 5%, and 1% points gives r = 3.8, $\lambda = 0.92$, and $\theta = -1.13$.
- Implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C.
- Implies 2.9% probability of *negative* ΔT , consistent with scientific studies.

Fitted Distribution for ΔT_H

Climate Sensitivity Distribution Mean = 3.0, $\lambda = 0.92$, r = 3.80.25 0.2 0.15 (∆ T) 0.1 0.05 .029 0L -2 0 2 3 4.5 6 7 8 10 12 14 Temperature Change, A T $\theta = -1.13$

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

June 2010 15 / 37

ΔT_t : Unconstrained and Constrained so $\Delta T_H \leq \tau$

Recall $\Delta T_t = 2\Delta T_H [1 - (1/2)^{t/H}].$

• How bad would be a $\Delta T \ge 5^{\circ}$ C?

- How bad would be a $\Delta T \ge 5^{\circ}$ C?
- Might argue we do not and cannot know. Outside of our experience and models.

- How bad would be a $\Delta T \ge 5^{\circ}$ C?
- Might argue we do not and cannot know. Outside of our experience and models.
- Could say same thing about probabilities of ΔT beyond 5°C; outside of experience and range of climate science models.

- How bad would be a $\Delta T \ge 5^{\circ}$ C?
- Might argue we do not and cannot know. Outside of our experience and models.
- Could say same thing about probabilities of ΔT beyond 5°C; outside of experience and range of climate science models.
- Alternative: treat IAMs and related models analogously to climate science models.

- How bad would be a $\Delta T \ge 5^{\circ}$ C?
- Might argue we do not and cannot know. Outside of our experience and models.
- Could say same thing about probabilities of ΔT beyond 5°C; outside of experience and range of climate science models.
- Alternative: treat IAMs and related models analogously to climate science models.
- IAMs give range (and confidence points) of lost GDP for 4°C and 5°C ΔT .

- How bad would be a $\Delta T \ge 5^{\circ}$ C?
- Might argue we do not and cannot know. Outside of our experience and models.
- Could say same thing about probabilities of ΔT beyond 5°C; outside of experience and range of climate science models.
- Alternative: treat IAMs and related models analogously to climate science models.
- IAMs give range (and confidence points) of lost GDP for 4°C and 5°C ΔT .
- Can use this information to get probability distribution for economic impact.

• Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.
- DG distribution, $g(\beta)$; β and ΔT independently distributed.

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.
- DG distribution, $g(\beta)$; β and ΔT independently distributed.
- Calibrate parameters of distribution for β using:

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.
- DG distribution, $g(\beta)$; β and ΔT independently distributed.
- Calibrate parameters of distribution for β using:
 - IPCC (2007) for $\Delta T = 4^{\circ}$ C, global mean loss "most likely" in range of 1% to 5% of GDP.

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.
- DG distribution, $g(\beta)$; β and ΔT independently distributed.
- Calibrate parameters of distribution for β using:
 - IPCC (2007) for $\Delta T = 4^{\circ}$ C, global mean loss "most likely" in range of 1% to 5% of GDP.
 - "Most likely" = 66% to 90% confidence interval.

- Begin with exponential-quadratic: $L(\Delta T) = \exp[-\beta(\Delta T)^2]$
- Treat β as stochastic.
- DG distribution, $g(\beta)$; β and ΔT independently distributed.
- Calibrate parameters of distribution for β using:
 - IPCC (2007) for $\Delta T = 4^{\circ}$ C, global mean loss "most likely" in range of 1% to 5% of GDP.
 - "Most likely" = 66% to 90% confidence interval.
 - Dietz and Stern (2008) graphical summary of IAM damage estimates shows 0.5% to 2% of lost GDP for $\Delta T = 3^{\circ}$ C, and 1% to 8% of GDP for $\Delta T = 5^{\circ}$ C.

• Want distribution for γ in $g_t = g_0 - \gamma \Delta T_t$. Use $\gamma = 1.79\beta \Delta T/H$.

- Want distribution for γ in $g_t = g_0 \gamma \Delta T_t$. Use $\gamma = 1.79 \beta \Delta T / H$.
- Using IPCC range, I take mean loss for $\Delta T = 4^{\circ}$ C to be 3% of GDP, and 5% and 95% points (or 17% and 83% points) to be 1% of GDP and 5% of GDP. Results consistent with summary numbers in Dietz and Stern.

- Want distribution for γ in $g_t = g_0 \gamma \Delta T_t$. Use $\gamma = 1.79 \beta \Delta T / H$.
- Using IPCC range, I take mean loss for $\Delta T = 4^{\circ}$ C to be 3% of GDP, and 5% and 95% points (or 17% and 83% points) to be 1% of GDP and 5% of GDP. Results consistent with summary numbers in Dietz and Stern.
- Implies that mean, 5% and 95% (or 17% and 83%) values for γ are $\gamma_0 = .0001363$, $\gamma_1 = .0000450$, and $\gamma_2 = .0002295$.

- Want distribution for γ in $g_t = g_0 \gamma \Delta T_t$. Use $\gamma = 1.79 \beta \Delta T / H$.
- Using IPCC range, I take mean loss for $\Delta T = 4^{\circ}$ C to be 3% of GDP, and 5% and 95% points (or 17% and 83% points) to be 1% of GDP and 5% of GDP. Results consistent with summary numbers in Dietz and Stern.
- Implies that mean, 5% and 95% (or 17% and 83%) values for γ are $\gamma_0 = .0001363$, $\gamma_1 = .0000450$, and $\gamma_2 = .0002295$.
- I fit DGD to these numbers, and use higher-variance version for WTP calculations.

Distributions for Loss Function Parameter γ

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

Willingness to Pay

• Given distributions $f(\Delta T)$ and $g(\gamma)$, denote by $M_{\tau}(t)$ and $M_{\infty}(t)$ the time-t expectations:

$$M_{\tau}(t) = \frac{1}{F(\tau)} \int_{\theta_{T}}^{\tau} \int_{\theta_{\gamma}}^{\infty} e^{\omega - \rho t - \omega(1/2)^{t/H}} f(\Delta T) g(\gamma) d\Delta T d\gamma$$
$$M_{\infty}(t) = \int_{\theta_{T}}^{\infty} \int_{\theta_{\gamma}}^{\infty} e^{\omega - \rho t - \omega(1/2)^{t/H}} f(\Delta T) g(\gamma) d\Delta T d\gamma$$

where θ_T and θ_γ are lower limits on distributions for ΔT and γ , and $F(\tau) = \int_{\theta_T}^{\tau} f(\Delta T) d\Delta T$.

Willingness to Pay

• Given distributions $f(\Delta T)$ and $g(\gamma)$, denote by $M_{\tau}(t)$ and $M_{\infty}(t)$ the time-t expectations:

$$M_{\tau}(t) = \frac{1}{F(\tau)} \int_{\theta_{\tau}}^{\tau} \int_{\theta_{\gamma}}^{\infty} e^{\omega - \rho t - \omega(1/2)^{t/H}} f(\Delta T) g(\gamma) d\Delta T d\gamma$$

$$M_{\infty}(t) = \int_{\theta_{T}}^{\infty} \int_{\theta_{\gamma}}^{\infty} e^{\omega - \rho t - \omega(1/2)^{t/H}} f(\Delta T) g(\gamma) d\Delta T d\gamma$$

where θ_T and θ_γ are lower limits on distributions for ΔT and γ , and $F(\tau) = \int_{\theta_T}^{\tau} f(\Delta T) d\Delta T$.

• Thus $W_1(\tau)$ (abatement) and W_2 (no abatement) are:

$$W_{1}(\tau) = \frac{[1 - w(\tau)]^{1 - \eta}}{1 - \eta} \int_{0}^{\infty} M_{\tau}(t) dt \equiv \frac{[1 - w(\tau)]^{1 - \eta}}{1 - \eta} G_{\tau}$$
$$W_{2} = \frac{1}{1 - \eta} \int_{0}^{\infty} M_{\infty}(t) dt \equiv \frac{1}{1 - \eta} G_{\infty}$$

• Setting $W_1(\tau) = W_2$, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

イロト イロト イヨト イ

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

• Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .
 - In finance and macro literature, δ usually .01 to .04.

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .
 - In finance and macro literature, δ usually .01 to .04.
 - Can argue (value judgment) for intergenerational comparisons, δ should be close to 0.

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .
 - In finance and macro literature, δ usually .01 to .04.
 - Can argue (value judgment) for intergenerational comparisons, δ should be close to 0.
 - In finance and macro literature, η usually 1.5 to 4.

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .
 - In finance and macro literature, δ usually .01 to .04.
 - Can argue (value judgment) for intergenerational comparisons, δ should be close to 0.
 - In finance and macro literature, η usually 1.5 to 4.
 - Actual g_0 around .02 to .025.

• Setting
$$W_1(\tau) = W_2$$
, WTP is

$$w^*(\tau) = 1 - [G_{\infty}/G_{\tau}]^{\frac{1}{1-\eta}}$$

- Parameter Values. Want "reasonable" numbers for δ , η , and g_0 , but skewed to high WTP.
- Translation: want "small" δ , η , and g_0 .
 - In finance and macro literature, δ usually .01 to .04.
 - Can argue (value judgment) for intergenerational comparisons, δ should be close to 0.
 - In finance and macro literature, η usually 1.5 to 4.
 - Actual g_0 around .02 to .025.
- I will use $\delta =$ 0, $\eta \approx$ 2, and g_0 from .015 to .025.

No Uncertainty

• Removing uncertainty provides intuition for WTP.

No Uncertainty

- Removing uncertainty provides intuition for WTP.
- With no uncertainty:

$$W_{1}(\tau) = \frac{[1 - w(\tau)]^{1 - \eta}}{1 - \eta} \int_{0}^{N} e^{\omega_{\tau} - \rho t - \omega_{\tau}(1/2)^{t/H}} dt$$

$$W_{2} = \frac{1}{1-\eta} \int_{0}^{N} e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where $\omega = 2(\eta - 1)\gamma_0 H\Delta T_H / \ln(1/2)$ and $\omega_{\tau} = 2(\eta - 1)\gamma_0 \tau / \ln(1/2)$. (I use mean value, γ_0 , as certainty-equivalent γ .)

No Uncertainty

- Removing uncertainty provides intuition for WTP.
- With no uncertainty:

$$W_{1}(\tau) = \frac{[1 - w(\tau)]^{1 - \eta}}{1 - \eta} \int_{0}^{N} e^{\omega_{\tau} - \rho t - \omega_{\tau}(1/2)^{t/H}} dt$$

$$W_{2} = \frac{1}{1-\eta} \int_{0}^{N} e^{\omega - \rho t - \omega(1/2)^{t/H}} dt$$

where $\omega = 2(\eta - 1)\gamma_0 H\Delta T_H / \ln(1/2)$ and $\omega_{\tau} = 2(\eta - 1)\gamma_0 \tau / \ln(1/2)$. (I use mean value, γ_0 , as certainty-equivalent γ .)

• Figure shows $w^*(0)$ for range of ΔT_H , with $\eta = 2$, $\delta = 0$, and g = .015, .020, .025.

WTP for Known ΔT_H ($\tau = 0$)

CLIMATE CHANGE POLICY

June 2010 24 / 37

Both ΔT and γ Uncertain

• Both ΔT and the impact parameter γ are uncertain.

- Both ΔT and the impact parameter γ are uncertain.
- Figure shows $w^*(\tau)$ for $\delta = 0$, $\eta = 2$ and 1.5, and $g_0 = .015$, .020, and .025.

- Both ΔT and the impact parameter γ are uncertain.
- Figure shows $w^*(\tau)$ for $\delta = 0$, $\eta = 2$ and 1.5, and $g_0 = .015$, .020, and .025.
- To get WTP above 2%, even for $\tau = 0$, need $\eta = 1.5$ or $g_0 = .015$ if $\eta = 2$.

- Both ΔT and the impact parameter γ are uncertain.
- Figure shows $w^*(\tau)$ for $\delta = 0$, $\eta = 2$ and 1.5, and $g_0 = .015$, .020, and .025.
- To get WTP above 2%, even for $\tau = 0$, need $\eta = 1.5$ or $g_0 = .015$ if $\eta = 2$.
- Next figure shows $w^*(3)$ as function of η for $g_0 = .02$. For $\delta = 0$, can get $w^*(3) > .05$ if η close to 1.
- Both ΔT and the impact parameter γ are uncertain.
- Figure shows $w^*(\tau)$ for $\delta = 0$, $\eta = 2$ and 1.5, and $g_0 = .015$, .020, and .025.
- To get WTP above 2%, even for $\tau = 0$, need $\eta = 1.5$ or $g_0 = .015$ if $\eta = 2$.
- Next figure shows $w^*(3)$ as function of η for $g_0 = .02$. For $\delta = 0$, can get $w^*(3) > .05$ if η close to 1.

• If
$$\delta = .01$$
, $w^*(3) < .02$ for any η .

WTP for ΔT and γ Uncertain, $\delta =$ 0, $\eta =$ 2, 1.5

Robert Pindyck (MIT)

June 2010 26 / 37

<u>WTP Versus</u> η for $\tau = 3$.

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

June 2010 27 / 37

• Most parameter values give low WTP, even for small τ .

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.
 - Now if $\delta = 0$ and η close to 1, $w^*(3)$ close to .08.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.
 - Now if $\delta = 0$ and η close to 1, $w^*(3)$ close to .08.
 - If $\delta = .01$, $w^*(3) < .03$ for all η .

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.
 - Now if $\delta = 0$ and η close to 1, $w^*(3)$ close to .08.
 - If $\delta = .01$, $w^*(3) < .03$ for all η .
- Next figure shows $w^*(3)$ for H = 100 but $\mathcal{E}(\Delta T_{100}) = 5^{\circ}$ C.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.
 - Now if $\delta = 0$ and η close to 1, $w^*(3)$ close to .08.
 - If $\delta = .01$, $w^*(3) < .03$ for all η .
- Next figure shows $w^*(3)$ for H = 100 but $\mathcal{E}(\Delta T_{100}) = 5^{\circ}$ C.
 - Now if η near 1, $w^*(3)$ close to 10%.

- Most parameter values give low WTP, even for small τ .
- But these results based on distributions for ΔT and γ inferred from IPCC (2007) and concurrent economic studies.
- Perhaps "most likely" ΔT in 2100 is higher than IPCC's 1.0°C to 4.5°C range. In Feb. 2009 report, MIT model puts $\mathcal{E}(\Delta T)$ in 2100 at 4°C to 5°C, not 3°C.
- Figure shows $w^*(3)$ versus η for H = 75 years.
 - Now if $\delta = 0$ and η close to 1, $w^*(3)$ close to .08.
 - If $\delta = .01$, $w^*(3) < .03$ for all η .
- Next figure shows $w^*(3)$ for H = 100 but $\mathcal{E}(\Delta T_{100}) = 5^{\circ}$ C.
 - Now if η near 1, $w^*(3)$ close to 10%.
 - But if $\delta = .01$, $w^*(3)$ again very low for all η .

WTP Versus η for $\tau = 3$, H = 75 years.

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

June 2010 29 / 37

WTP Versus η for $\tau = 3$, $\mathcal{E}(\Delta T_{100}) = 5^{\circ}$ C.

Robert Pindyck (MIT)

June 2010 30 / 37

• Policy implications are rather stark.

- Policy implications are rather stark.
 - For temperature and impact distributions based on IPCC and "conservative" parameter values (e.g., $\delta = 0$, $\eta = 2$, $g_0 = .02$), WTP to prevent *any* ΔT is around 2% or less.

- Policy implications are rather stark.
 - For temperature and impact distributions based on IPCC and "conservative" parameter values (e.g., $\delta = 0$, $\eta = 2$, $g_0 = .02$), WTP to prevent any ΔT is around 2% or less.
 - If objective is to keep ΔT in 100 years below 3°C (much more feasible), WTP lower still.

- Policy implications are rather stark.
 - For temperature and impact distributions based on IPCC and "conservative" parameter values (e.g., $\delta = 0$, $\eta = 2$, $g_0 = .02$), WTP to prevent *any* ΔT is around 2% or less.
 - If objective is to keep ΔT in 100 years below 3°C (much more feasible), WTP lower still.
 - Even if H=75 or $\mathcal{E}(\Delta T)=5^\circ {\rm C}$, get high WTP only if $\eta<1.5.$

- Policy implications are rather stark.
 - For temperature and impact distributions based on IPCC and "conservative" parameter values (e.g., $\delta = 0$, $\eta = 2$, $g_0 = .02$), WTP to prevent any ΔT is around 2% or less.
 - If objective is to keep ΔT in 100 years below 3°C (much more feasible), WTP lower still.
 - Even if H=75 or $\mathcal{E}(\Delta T)=5^\circ {\rm C}$, get high WTP only if $\eta<1.5.$
 - If $\delta = .01$, get low WTP for *all* parameter combinations.

• Two reasons. First, limited weight in tails of distributions for ΔT and γ , consistent with studies surveyed by the IPCC.

- Two reasons. First, limited weight in tails of distributions for ΔT and γ , consistent with studies surveyed by the IPCC.
 - Distribution for ΔT implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C in 100 years, and 5% probability of $\Delta T \ge 7.0^{\circ}$ C.

- Two reasons. First, limited weight in tails of distributions for ΔT and γ , consistent with studies surveyed by the IPCC.
 - Distribution for ΔT implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C in 100 years, and 5% probability of $\Delta T \ge 7.0^{\circ}$ C.
 - Distribution for γ implies a 17% probability of $\gamma \ge .00023$.

- Two reasons. First, limited weight in tails of distributions for ΔT and γ , consistent with studies surveyed by the IPCC.
 - Distribution for ΔT implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C in 100 years, and 5% probability of $\Delta T \ge 7.0^{\circ}$ C.
 - Distribution for γ implies a 17% probability of $\gamma \ge .00023$.
 - $\Delta T = 4.5^{\circ}$ C and $\gamma = .00023$ implies GDP in 100 years 5.7% lower than if $\Delta T = 0$. But Prob($\Delta T \ge 4.5^{\circ}$ C and $\gamma \ge .00023$) only about 3.6%.

- Two reasons. First, limited weight in tails of distributions for ΔT and γ , consistent with studies surveyed by the IPCC.
 - Distribution for ΔT implies 21% probability of $\Delta T \ge 4.5^{\circ}$ C in 100 years, and 5% probability of $\Delta T \ge 7.0^{\circ}$ C.
 - Distribution for γ implies a 17% probability of $\gamma \ge .00023$.
 - $\Delta T = 4.5^{\circ}$ C and $\gamma = .00023$ implies GDP in 100 years 5.7% lower than if $\Delta T = 0$. But Prob($\Delta T \ge 4.5^{\circ}$ C and $\gamma \ge .00023$) only about 3.6%.
 - $\Delta T = 7^{\circ}$ C (and $\gamma = .00023$) implies GDP in 100 years 9% lower, but probability only 0.9%.

• Second, even with $\delta = 0$, implicit discounting of consumption is significant.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.
 - And a (low-probability) 5.7 or 9 percent loss of GDP in 100 years would involve much smaller losses in earlier years.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.
 - And a (low-probability) 5.7 or 9 percent loss of GDP in 100 years would involve much smaller losses in earlier years.
- These results argue against stringent GHG abatement policy, but are consistent with moderate abatement.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.
 - And a (low-probability) 5.7 or 9 percent loss of GDP in 100 years would involve much smaller losses in earlier years.
- These results argue against stringent GHG abatement policy, but are consistent with moderate abatement.
- 2% of GDP in range of cost estimates for compliance with Kyoto Protocol.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.
 - And a (low-probability) 5.7 or 9 percent loss of GDP in 100 years would involve much smaller losses in earlier years.
- These results argue against stringent GHG abatement policy, but are consistent with moderate abatement.
- 2% of GDP in range of cost estimates for compliance with Kyoto Protocol.
- Taking U.S. in isolation, WTP of 2% implies \$300 billion per year for GHG abatement.

- Second, even with $\delta = 0$, implicit discounting of consumption is significant.
 - Initial consumption discount rate is ηg_0 , at least .03 if $\eta = 2$.
 - And a (low-probability) 5.7 or 9 percent loss of GDP in 100 years would involve much smaller losses in earlier years.
- These results argue against stringent GHG abatement policy, but are consistent with moderate abatement.
- 2% of GDP in range of cost estimates for compliance with Kyoto Protocol.
- Taking U.S. in isolation, WTP of 2% implies \$300 billion per year for GHG abatement.
- And if $w^*(3) = .01$, would justify \$150 billion per year if abatement would limit ΔT to 3°C.

• I argued that ΔT should reduce the *growth rate* of GDP, not the level.

- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?

- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?
- Companion paper compares two alternative loss functions.

- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?
- Companion paper compares two alternative loss functions.
- Direct impact:

- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?
- Companion paper compares two alternative loss functions.
- Direct impact:

•
$$L(\Delta T) = e^{-\beta(\Delta T)^2}$$
- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?
- Companion paper compares two alternative loss functions.
- Direct impact:

•
$$L(\Delta T) = e^{-\beta(\Delta T)^2}$$

• Recall $\gamma = 1.79 \beta \Delta T_H / H$.

- I argued that ΔT should reduce the *growth rate* of GDP, not the level.
- How different would the result be if I assumed a direct impact on GDP, as do most IAMs?
- Companion paper compares two alternative loss functions.
- Direct impact:
 - $L(\Delta T) = e^{-\beta(\Delta T)^2}$
 - Recall $\gamma = 1.79 \beta \Delta T_H / H$.
- Can get WTP by similar steps.

• Let $w_c^*(\tau)$ denote WTP for direct impact on GDP and consumption, $w_g^*(\tau)$ denote growth rate impact.

- Let w^{*}_c(τ) denote WTP for direct impact on GDP and consumption, w^{*}_g(τ) denote growth rate impact.
- With direct impact, consumption loss is greater at short horizons, but smaller at long horizons.

- Let w^{*}_c(τ) denote WTP for direct impact on GDP and consumption, w^{*}_g(τ) denote growth rate impact.
- With direct impact, consumption loss is greater at short horizons, but smaller at long horizons.
- $w_c^*(\tau) < w_g^*(\tau)$ for low values of η because low η implies low consumption discount rate.

- Let $w_c^*(\tau)$ denote WTP for direct impact on GDP and consumption, $w_g^*(\tau)$ denote growth rate impact.
- With direct impact, consumption loss is greater at short horizons, but smaller at long horizons.
- $w_c^*(\tau) < w_g^*(\tau)$ for low values of η because low η implies low consumption discount rate.
- Overall, differences are small, and basic results hold.

$$w_c^*(3)$$
 and $w_g^*(3)$, $H=100$, $g_0=.020$, $\delta=0$

Robert Pindyck (MIT)

CLIMATE CHANGE POLICY

June 2010 36 / 37

• Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.
- Caveats are in order:

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.
- Caveats are in order:
 - I used current consensus on the distributions for ΔT and its impact. Maybe consensus is wrong, especially about tails.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.
- Caveats are in order:
 - I used current consensus on the distributions for ΔT and its impact. Maybe consensus is wrong, especially about tails.
 - We have very little data to assess, e.g., likelihood of $\Delta T > 5^{\circ}$ C, never mind its economic impact.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.
- Caveats are in order:
 - I used current consensus on the distributions for ΔT and its impact. Maybe consensus is wrong, especially about tails.
 - We have very little data to assess, e.g., likelihood of $\Delta T > 5^{\circ}$ C, never mind its economic impact.
 - I used linear loss function, but maybe convex relationship between ΔT and the growth rate g_t is more realistic.

- Debate among economists is not whether to abate, but whether a stringent policy is needed now, or instead begin slowly.
- My results support a "begin slowly" policy.
- Dynamically efficient, accounts for technological change that reduces abatement costs, and allows for learning.
- Caveats are in order:
 - I used current consensus on the distributions for ΔT and its impact. Maybe consensus is wrong, especially about tails.
 - We have very little data to assess, e.g., likelihood of $\Delta T > 5^{\circ}$ C, never mind its economic impact.
 - I used linear loss function, but maybe convex relationship between ΔT and the growth rate g_t is more realistic.
- Results also imply: Keep research focus on the tails.