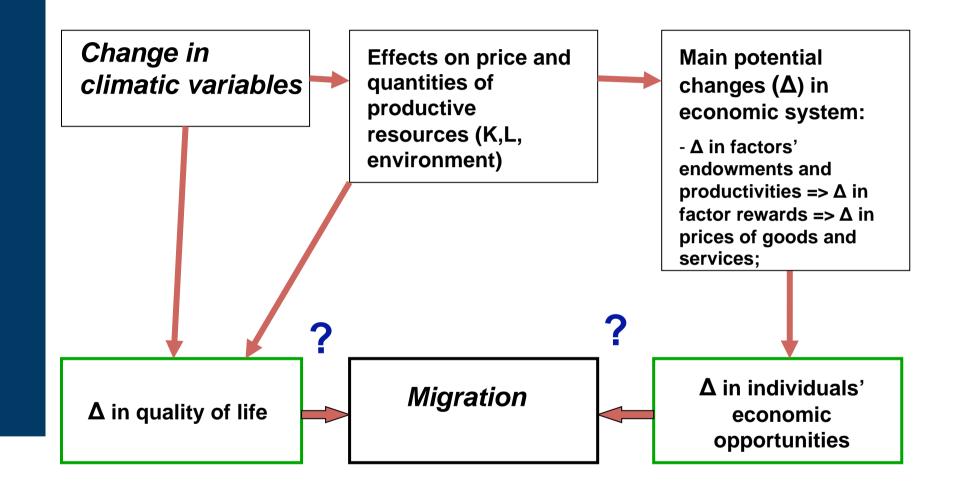


Climate Change, Extreme Weather Events and International Migration*

Nicola Coniglio and Giovanni Pesce Fondazione Eni Enrico Mattei (FEEM) and University of Bari

Milan, 23 September 2010

*This research has been conducted within the CIRCE (Climate Change and Impact Research: the Mediterranean Environment) project funded by the European Commission Contract No 036961 GOCE.


Road Map

- Research question(s): Is climate change a push factor for international migration flows? If yes, which type of climate shocks matters? Which vulnerability factors may limit or enhance (international) migration?
- Motivation and background
- Methodology and data description
- Empirical findings
- Some conclusive remarks

Climate change and migration: what are the links?

Climate Change, Extreme Weather Events and International Labour Migration

2

2.

What do we know?

- Estimates of climate-induced migrants (at 2050) range from a few hundreds thousand (Meyers, 2001) to 1 billion (Christian Aid, 2007), but... these are measures of population at risk rather than predicted flows!
- Beyond rule of thumb approach: A thin but growing (empirical) scientific base which uses a large variety of methodology.

Piguet (2010) classification of existing studies:

(1) <u>ecological inference</u> based on area characteristics (mainly multivariate analysis as in our study) – Munshi QJE 2003 on Mexican provinces; Barrios et al 2006 on urbanization in SSA; Reuveny et al 2010;

(2) *individual sample surveys* – Findley 1994 on Mali; Massey et al 2004 on Nepal;

Climate Change, Extreme Weather Events and International Labour Migration

3.

- (3) <u>time series analysis</u> Kniveton et al 2009 on Mexico (main limit: study of co-evolution of climate and migration dynamics without controlling for other vaiables);
- (4) <u>multilevel analysis</u> (combine ecological data and individual data) Henry et al (2004) on Burkina Faso (rainfall deficits discourage moves toward more distant destinations)
- (5) Agent Based Modelling Black et al 2008 on Burkina Faso
- (6) <u>Qualitative/Ethnographic</u> a large number of studies (ex. McLeman et al 2008 on 1930s drought in eastern Oklahoma) which emphasize the multicasuality of migration

Climate Change, Extreme Weather Events and International Labour Migration

4

Key insights from existing studies

- (i) The crucial importance of additional factors institutions, financial capital/relative level of development, "relationship" capital such as access to diasporas, etc. - in shaping the links between climate change and migration;
- (ii) International migration is a costly adaptation strategy;

(iii) Qualitative studies / survey based studies highlights the importance of the type of shocks

Empirical Methodology

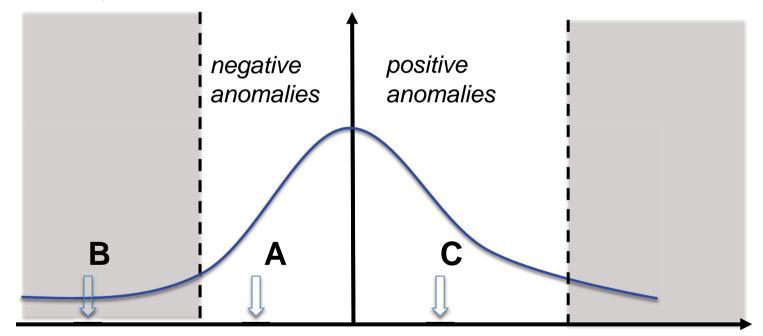
We employ a modified version of the pseudo-gravity model of Ortega & Peri (2009) in order to investigate the determinants of bilateral international migration:

$$\ln(migration)_{ijt} = \beta_1(income)_{it-1} + \beta_2(employment)_{it-1} + \beta_3(distance)_{ij} + \beta_4(\Delta Climate)_{it-n} + D_i + D_{jt} + e_{ijt}$$

- ✓ The model is based on a theoretical model of migration choice across multiple destination (Grogger and Hanson 2008)
- ✓ We focus on push factors (mainly past climate anomalies) and we use fixed effects;
- ✓ We control for unobserved destination country and time-varying characteristics (D_{jt})

Climate Change, Extreme Weather Events and International Labour Migration

4.


The data

- Immigration flows in 26 OECD countries from 165 countries of origin (OECD International Migration Database; IMD) from 1990 to 2001;
- Climate variables: country level average precipitation and temperature (until 2000), TYN CY 1.1 database, Mitchell et al. (2003); climate anomalies are computed with respect to 1961-1990 mean values
- Bilateral stock of emigrants by OECD countries of destination and by nationality (country of origin) in 1990s, Docquier et al. (2007);
- Other database employed: United Nations Statistics Division (National Accounts Estimates of Main Aggregates Database, Millennium Development Goals Indicators, World Urbanization Prospects: The 2007 Revision), CEPII Distances Database, World Development Indicators database

Identifying climate shocks (1)

For all 165 (migration) sending countries we compute (i) **the long-term mean of precipitations and temperatures** and (ii) the main features of climatic anomalies' distribution (StDev, 90th and 10th percentiles, kurtosis, skewness)


Country *X* **distribution of climatic anomalies**


Climate Change, Extreme Weather Events and International Labour Migration

8

Gabon

0

prec_lag1

Normal density

Kernel density estimate

Precipitations: skewness: -0,97 kurtosis (excess): 2,46

Climate Change, Extreme Weather Events and International Labour Migration Precipitations: skewness: 0,63 kurtosis (excess): 0,60

-500

0

-1000

500

1000

9

Identifying climate shocks (2)

Climatic variables (precipitation/temperature) employed in the analysis:

- absolute level;
- anomalies wrt countries' mean values (absolute value / percentage value);
- positive (negative) anomalies;
- squared values of anomalies (non linear effects);
- extreme anomalies (above a certain threshold; 1 StDev, 90th and 10th percentiles);
- positive (negative) extreme anomalies;

Time dimension. For all the above variables we consider the anomalies at **lag -1, -3 and -5** (mean and cumulated values).

- > Data constraints:
- Migration data: missing info on South-South migration flows; limited timespan and country coverage;
- ✓ Identification of climate anomalies: yearly data aggregated at the countrylevel might mask high intra-borders variations, and seasonal shifts
- Complexity of links: direct and indirect effects are at work, including other push factors of international migration flows

6.

Estimation results: first step

Dependent variable: Bilateral migration flows ij (in log)	Baseline	mod 1 PREC	mod 2 PREC	mod 3 PREC	mod 4 TEMP	mod 5 TEMP	mod 6 TEMP	
GDPper capita i (lag 1; ln)	-0.211** (0.0759)	-0.329*** (0.0862)	-0.341*** (0.0867)	-0.330*** (0.0925)	-0.322*** (0.0901)	-0.328*** (0.0903)	-0.320*** (0.0895)	Main results from a simple
Employment rate difference ij (lag 1)	0.0239*** (0.00698)	0.0234* (0.0130)	0.0238* (0.0134)	0.0246* (0.0133)	0.0244* (0.0132)	0.0240* (0.0131)	0.0236* (0.0137)	, specification à la
Network migrants ij (1990s; In)	0.519*** (0.0314)	0.608*** (0.0374)	0.608*** (0.0374)	0.608*** (0.0373)	0.608*** (0.0373)	0.608*** (0.0373)	0.608*** (0.0373)	Barrios et al (2006)
Irrigated land % i (change lag - lag 1)	-0.167*** (0.0575)	-0.0124 (0.128)	-0.0226 (0.127)	-0.0213 (0.128)	-0.0175 (0.125)	-0.0196 (0.126)	-0.0140 (0.125)	
Distance ij (In)	-0.512*** (0.139)	-0.356** (0.148)	-0.356** (0.148)	-0.356** (0.148)	-0.356** (0.148)	-0.356** (0.148)	-0.356** (0.148)	- No stat significant
Common language (dummy)	0.637*** (0.155)	0.511*** (0.146)	0.511*** (0.146)	0.511*** (0.146)	0.511*** (0.146)	0.511*** (0.146)	0.511*** (0.146)	effects on int
Precipitation (mean past 3years; absolute value in mm)		-0.000241 (0.000219)						migration flows when
Precipitation anomalies (mean past 3years; absolute value in mm)			-0.000469 (0.000293)					considering jointly climate anomalies of
Precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)				-0.302 (0.331)				different nature
Temperature (mean past 3years; absolute value in °C)					0.0339 (0.0908)			Results are robust for different
Temperature anomalies (mean past 3years; absolute value in °C)						0.0985 (0.0933)		time specification of
Temperature anomalies (mean past 3years; % value wrt mean 1961-1990)							0.622 (0.547)	anomalies (lag 1, 3
Constant	8.184*** (1.389)	6.547*** (1.359)	6.576*** (1.337)	6.545*** (1.342)	6.023*** (1.648)	6.455*** (1.367)	6.436*** (1.377)	and 5)
Observations R-squared	15,021 0.846	7,598 0.837	7,598 0.837	7,598 0.837	7,598 0.837	7,598 0.837	7,598 0.837	
Note: dependent variable In(migration flo country-by-year fixed effects. Robust sta Observations are weighted by the popula	ows ij +1)t. Reg indard errors o	gressions inclue	de origin countr untry of destinat	y fixed effects tion in parenth	and 286 (26 neses.			Fondazione Eni Enrico Mattei

	VARIABLES	2A TEMP	2B TEMP	2C TEMP	2D TEMP
	GDPper capita i (lag 1; ln)	-0.304*** (0.0892)	-0.299*** (0.0883)	-0.272*** (0.0858)	-0.292*** (0.0999)
	Employment rate difference ij (lag 1)	(0.0392) 0.0261* (0.0132)	0.0280** (0.0126)	0.0301** (0.0127)	(0.0399) 0.0249* (0.0136)
	Network migrants ij (1990s; In)	0.627*** (0.0352)	0.709*** (0.0399)	0.674*** (0.0312)	0.608*** (0.0372)
	Irrigated land % i (change lag - lag 1)	-0.0114 (0.123)	-0.0319 (0.117)	-0.0222 (0.126)	-0.00852 (0.126)
	Distance ij (ln)	-0.334** (0.148)	-0.304* (0.154)	-0.276* (0.158)	-0.356** (0.148)
	Common language (dummy)	0.485*** (0.141)	0.451*** (0.142)	0.432*** (0.138)	0.511*** (0.146)
	Temperature anomalies (mean past 3years; % value wrt mean 1961-1990)	2.048*** (0.636)		6.592** (2.479)	2.943 (2.537)
	Temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * Network migrants ij	-0.362*** (0.0950)		-1.327*** (0.346)	(
	Temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * GDPper capita i	(0.0350)	J	(0.340)	-0.386 (0.373)
	Temperature anomalies (mean past 3years) (squared)			-2.181** (0.876)	()
	Temperature anomalies (mean past 3years) * Network migrants ij (squared)			0.617***	
				(0.203)	
	Temperature anomalies (mean past 5years ; % value wrt mean 1961-1990)		1.277** (0.485)		
	Temperature anomalies (mean past 5years ; % value wrt mean 1961-1990) * Network migrants ij		-0.192*** (0.0633)		
	Constant	6.019*** (1.375)	6.453*** (1.364)	5.019*** (1.478)	6.279*** (1.422)
3_	Observations R-squared	7,598 0.839	7,598 0.837	7,598 0.840	7,598 0.837

- TEMPERATURE ANOMALIES

MIGRATION

NETWORKS

AND

- Anomalies in the past 3 (or 5) years are significantly associated with higher migration outflows but the existence of bilateral <u>networks seems</u> to mitigate the effect;

- But the effects are non linear (using model 2C): a network which is 1% larger that the mean value implies that the average shocks leads to a bilateral outmigration flow which is 4% larger

Note: dependent variable ln(migration flows ij +1)t. Regressions include origin country fixed effects and 286 (26x11) destination-country-by-year FE. Robust standard errors clustered by country of destination in parentheses. Observations are weighted by the population of destination countries. *** p<0.01, ** p<0.05, * p<0.1

VARIABLES	2A PREC	2B PREC	PRECIPIT
GDPper capita i (lag 1; ln)	-0.304*** (0.0867)	-0.253*** (0.0890)	ANOMALI
Employment rate difference ij (lag 1)	0.0232* (0.0134)	0.0233* (0.0132)	LEVEL
Network migrants ij (1990s; In)	0.608*** (0.0374)	0.608*** (0.0373)	DEVELOF
Irrigated land % i (change lag - lag 1)	-0.0290 (0.127)	-0.0277 (0.128)	- Anomalies
Distance ij (ln)	-0.356** (0.148)	-0.355** (0.148)	3 (or 5)
Common language (dummy)	0.512*** (0.146)	0.513*** (0.146)	significantly
Precipitation anomalies (mean past 3years ; in mm)	0.00237* (0.00119)		with highe outflows b
Precipitation anomalies (mean past 3years ; in mm)* GDPper capita i	-0.000398** (0.000160)		countries
Precipitation anomalies (mean past 5years ; in mm)	. ,	0.00599*** (0.00120)	relatively
Precipitation anomalies (mean past 5years ; in mm)* GDPper capita i		-0.000890***	average G most Africa
Constant	6.343***	(0.000182) 6.031***	China,
-	(1.357)	(1.391)	thereshold
Observations	7,598	7,598	current us c
R-squared	0.838	0.838	

PRECIPITATION ANOMALIES AND LEVEL OF DEVELOPMENT

- Anomalies in the past 3 (or 5) years are significantly associated with higher migration outflows but only in countries that are relatively poor (below average GDP pc as most African countries, China, Philippines; thereshold circa 1700 current us dollar);

Note: dependent variable ln(migration flows ij +1)t. Regressions include origin country fixed effects and 286 (26x11)

destination-country-by-year FE. Robust standard errors clustered by country of destination in parentheses. Observations are weighted by the population of destination countries. *** p<0.01, ** p<0.05, * p<0.1

Sign and type of anomalies: some results

Dependent variable:	3A	3B	3C	3D
Bilateral migration flows ij (in log)	TEMPERATURE	TEMPERATURE	PRECIPITATION	PRECIPITATION

.....(baseline vars omitted).....

Positive temperature anomalies (mean past 3years; % value wrt mean 1961-1990)	6.155*** (1.547)	6.040* (3.376)		
Negative temperature anomalies (mean past 3years; % value wrt mean 1961-1990)	16.18**	28.39*		
Positive temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * Network migrants ij (1990s; ln)	(7.350) -1.206*** (0.279)	(14.40)		
Negative temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * Network migrants ij (1990s; ln)	-2.524** (0.954)			
Positive temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * GDPper capita i (lag 1; ln)		-0.938* (0.482)		
Negative temperature anomalies (mean past 3years; % value wrt mean 1961-1990) * GDPper capita i (lag 1; ln)		-3.855* (2.101)		
Positive precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)			-0.174 (0.505)	
Negative precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)			-2.352** (1.037)	-2.150** (0.984)
Positive precipitation anomalies (mean past 3years; % value wrt mean 1961-1990) * Network migrants ij (1990s; In)			-0.0538 (0.0805)	(0.000)
Negative precipitation anomalies (mean past 3years; % value wrt mean 1961-1990) * Network migrants ij (1990s; ln)			0.368* (0.179)	0.380* (0.185)
Constant	5.120*** (1.471)	6.178*** (1.381)	6.602*** (1.326)	6.509*** (1.361)
Observations R-squared	7,598 0.840	7,598 0.838	7,598 0.838	7,598 0.838

VARIABLES	4A PREC	4B PREC	4C PREC	4D PREC	4E PREC
GDPper capita i (lag 1; ln)	-0.320***	-0.322***	-0.319***	-0.321***	-0.316***
Employment rate difference ij (lag 1)	(0.0895) 0.0259*	(0.0907) 0.0247*	(0.0894) 0.0260*	(0.0896) 0.0232*	(0.0844) 0.0258*
Network migrants ij (1990s; In)	(0.0135) 0.608*** (0.0374)	(0.0132) 0.608*** (0.0373)	(0.0134) 0.608*** (0.0373)	(0.0133) 0.616*** (0.0369)	(0.0136) 0.602*** (0.0375)
Irrigated land % i (change lag - lag 1)	-0.0212 (0.127)	-0.0187 (0.127)	-0.0214 (0.127)	-0.0292 (0.123)	-0.0106 (0.129)
Distance ij (ln)	-0.357** (0.148)	-0.356** (0.148)	-0.357** (0.148)	-0.353** (0.147)	-0.358** (0.148)
Common language (dummy)	0.510*** (0.146)	0.511*** (0.146)	0.510*** (0.146)	0.506*** (0.146)	0.507*** (0.146)
Extreme precipitation (above 90th percentile or below 10th percentile; average last 5 years; dummy)	-0.211** (0.0887)		()		(,
Extreme positive precipitation (above 90th percentile; average last 5 years; dummy)	(0.0687)	0.00943			
Extreme negative precipitation (below 10th percentile; average last 5 years; dummy)		(0.218)	-0.226**		
Extreme positive precipitation (above 90th percentile; cumulated abs values in the last 5 years; dummy)			(0.0971)	0.217**	
Extreme positive precipitation (above 90th percentile;				(0.0910) -0.0403**	
cumulated abs values in the last 5 years; dummy) * Network of migrant ij				(0.0168)	
Extreme negative precipitation (below 10th percentile; cumulated abs values in the last 5 years ; dummy)					-0.181* (0.0931)
Extreme negative precipitation (below 10th percentile; cumulated abs values in the last 5 years; dummy) * Network of					0.0304**
migrants ii Constant	6.461***	6.464***	6.455***	6.365***	(0.0145) 6.465***
	(1.367)	(1.368)	(1.367)	(1.361)	(1.355)
Observations R-squared Note: dependent variable lp(migration flows ii +1)t. Regressions ii	7,598 0.837	7,598 0.837	7,598 0.837	7,598 0.838	7,598 0.838

PRECIPITATION : EXTREME ANOMALIES

negative -Large shocks to precipitation might lead to a reduction in outflows (supports some existing surveybased evidence); complex role of established networks (positive remittances? Yang&Choi2007 negative = a bridge to outmigration? **McLeman** on Oklahoma)

Note: dependent variable ln(migration flows ij +1)t. Regressions include origin country fixed effects and 286 (26x11) destinationcountry-by-year fixed effects. Robust standard errors clustered by country of destination in parentheses. Observations are weighted by the population of destination countries. *** p<0.01, ** p<0.05, * p<0.1

	4A	4B	4C
VARIABLES	TEMP	TEMP	TEMP

.....(baseline vars omitted).....

Extreme temperature (above/below 1 st dev; cumulated abs values in the last 3 years; dummy)	-0.308** (0.146)		
Extreme temperature (above/below 1 st dev; cumulated abs values in the last 3 years; dummy) * network migrants ij	0.0503***		
Extreme temperature (above 90th percentile and below 10th percentile; cumulated abs values in the	(0.0180)	-0.299*	
last 3 years; dummy) Extreme temperature (above 90th percentile and below 10th percentile; cumulated abs values in the		(0.155) 0.0465**	
last 3 years ; dummy) * network migrants ij		(0.0191)	
Extreme temperature (above 90th percentile and below 10th percentile; cumulated abs values in the last 5 years; dummy)			0.422* (0.241)
Extreme temperature (above 90th percentile and below 10th percentile; cumulated abs values in the last 5 years; dummy) * GDP pc i			-0.0567*
last 5 years, dummy) GDP pc i			(0.0324)
Constant	6.663***	6.659***	6.042***
_	(1.355)	(1.355)	(1.439)

TEMPERATURES: EXTREME ANOMALIES

- Pro-migration effect of networks;

- Higher level of developments associated with lower flows (reduced vulnerability);

Observations	7,598	7,598	7,598
R-squared	0.838	0.838	0.837
Extreme Weather Events			
and International Labour Migration			

17

- Negative temperature anomalies have larger impacts on out-migration than positive ones;

- Larger migrant networks (GDP per capita) seems to have a "mitigation effects" in case of temperature anomalies;

- But enhance out-migration in case of negative precipitation anomalies. An average drop in precipitation of 12% (=1 st dev) in the past 3 years is associated to an increase in bilateral flows of +3,3% (for mean value of bilateral network size)

Does climate change affect international migration flows?

=> **Yes**....but under certain conditions (low level of development; established international migration networks; poor irrigation systems);

- evidence of heterogeneous & non-linear effects => predicting future scenario is a difficult task given the uncertainties on future climate scenario;
- How strong is the link? elasticity of migration flows to climate shocks are non-trivial for more vulnerable countries. Hence evidence on past shocks suggests that we should expect additional inflows into OECD countries as a consequence of adverse climatic shocks
- IMPORTANT: need to investigate the effects of climate shocks on internal displacement (urbanization) and South-South migration (which we are not able to investigate in this study

nicola.coniglio@feem.it

www.feem.it

11.

APPENDIX – VARIABLE DESCRIPTION ANS SUMMARY STATS

Variable	Number of observations	mean	standard deviation	min	max
Bilateral migration flows ij (log)	20004	1,509405	6,219857	0	163,441
GDPper capita i (lag 1; ln)	22020	7,32101	1,410849	4,141379	11,59981
Employment rate difference ij (lag 1)	19655	-3,453569	12,90016	-45,2	33,5
Network migrants ij (1990s; In)	17118	6,318642	3,028203	-1,187166	13,52166
Irrigated land % i (change lag - lag 1)	19531	0,0130973	0,0918523	-0,3933519	1,924138
Urbanization rate i (lag 1; % total population)	22278	50,63966	23,57055	0	100

Variable	Number of observations	mean	standard deviation	min	max
Precipitation anomalies (lag 1; absolute value in mm)	11276	121,1362	151,7847	0,19	1518,96
Precipitation anomalies (mean past 3years; absolute value in mm)	11276	117,6304	109,9191	2,091113	716,033
Precipitation anomalies (mean past 5years; absolute value in mm)	11276	115,1695	97,09559	3,408	634,299
Precipitation anomalies (lag 1; % value wrt mean 1961-1990)	11276	0,1171314	0,1203451	0,0000723	1,1373
Precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)	11276	0,113828	0,0898154	0,0059677	0,878482
Precipitation anomalies (mean past 5years; % value wrt mean 1961-1990)	11276	0,1125185	0,0817394	0,0069942	0,765090
Positive precipitation anomalies (lag 1; absolute value in mm)	11276	53,50751	118,5025	0	1518,9
Positive precipitation anomalies (mean past 3years; absolute value in mm)	11276	50,44085	67,065	0	566,74
Positive precipitation anomalies (mean past 5years; absolute value in mm)	11276	47,16397	53,43851	0	414,3
Negative precipitation anomalies (lag 1; absolute value in mm)	11276	67,62866	127,4114	0	1242
Negative precipitation anomalies (mean past 3years; absolute value in mm)	11276	67,18951	83,89347	0	626,43
Negative precipitation anomalies (mean past 5years; absolute value in mm)	11276	68,0055	72,97366	0	492,47
Positive precipitation anomalies (lag 1; % value wrt mean 1961-1990)	11276	0,0537114	0,1093943	0	1,1373
Positive precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)	11276	0,0539507	0,0769604	0	0,87848
Positive precipitation anomalies (mean past 5years; % value wrt mean 1961-1990)	11276	0,0524333	0,0688175	0	0,65323
Negative precipitation anomalies (lag 1; % value wrt mean 1961-1990)	11276	0,06342	0,0965878	0	0,56792
Negative precipitation anomalies (mean past 3years; % value wrt mean 1961-1990)	11276	0,0598773	0,0551379	0	0,34513
Negative precipitation anomalies (mean past 5years; % value wrt mean 1961-1990)	11276	0,0600852	0,0443988	0	0,26865
Extreme positive precipitation anomalies (mean past 3years; dummy; in the 90th percentile)	9615	0,025481	0,1575891	0	
Extreme negative precipitation anomalies (mean past 3years; dummy; in the 10th percentile)	10167	0,0319662	0,1759187	0	

Variable	Number of observations	mean	standard deviation	min	max
Temperature anomalies (lag 1; absolute value in °C)	11276	0,5147339	0,3966205	0	2,12
Temperature anomalies (mean past 3years; absolute /alue in °C)	11276	0,4882529	0,2662784	0,02	1,62
Femperature anomalies (mean past 5years; absolute /alue in °C)	11276	0,4487574	0,2212494	0,032	1,472
Femperature anomalies (lag 1; % value wrt mean I961-1990)	11276	0,0515679	0,1618769	0	2,91176
emperature anomalies (mean past 3years; % value vrt mean 1961-1990)	11276	0,0479073	0,1430774	0,0008203	2,32352
Temperature anomalies (mean past 5years; % value vrt mean 1961-1990)	11276	0,0437169	0,1212338	0,0013126	1,82352
Positive temperature anomalies (lag 1; absolute value in °C)	11276	0,4907396	0,4149303	0	2,1
Positive temperature anomalies (mean past 3years; absolute value in °C)	11276	0,4578896	0,2778405	0	1,6
Positive temperature anomalies (mean past 5years; Ibsolute value in °C)	11276	0,4111116	0,224159	0,008	1,3
legative temperature anomalies (lag 1; absolute alue in °C)	11276	0,0239943	0,0932347	0	1,2
Negative temperature anomalies (mean past 3years; ubsolute value in °C)	11276	0,0303633	0,0704234	0	0,6
legative temperature anomalies (mean past 5years; bsolute value in °C)	11276	0,0376458	0,0661831	0	0,68
Positive temperature anomalies (lag 1; % value wrt nean 1961-1990)	11276	0,0369816	0,067201	0	0,793177
Positive temperature anomalies (mean past 3years; 6 value wrt mean 1961-1990)	11276	0,032507	0,0484452	0	0,643923
Positive temperature anomalies (mean past 5years; % value wrt mean 1961-1990)	11276	0,0290245	0,0396555	0	0,51940
Negative temperature anomalies (lag 1; % value wrt nean 1961-1990)	11276	0,0022402	0,0125936	0	0,230277
Vegative temperature anomalies (mean past 3years; 6 value wrt mean 1961-1990)	11276	0,003079	0,0104489	0	0,156729
Vegative temperature anomalies (mean past 5years; 6 value wrt mean 1961-1990)	11276	0,0038176	0,0108505	0	0,147189
Extreme positive temperature anomalies (mean past Byears; dummy; in the 90th percentile)	11191	0,4522384	0,4977358	0	
Extreme negative temperature anomalies (mean past 3years; dummy; in the 10th percentile)	3437	0,0043643	0,0659279	0	