

A Numerical Analysis of Optimal Extraction and Trade of Oil Under Climate Policy

Fabio Sferra, Fondazione Eni Enrico Mattei

joint work with Emanuele Massetti

FEEM - IEFE Joint Seminar Series FEEM Milan, 12 November 2009

Without a description of regional trade and investment of oil sector, regional stabilization cost might be biased

We introduce endogenous investments for oil extraction capacity

We can track how financial flows associated with the international trade of oil change when climate policy is introduced

Eight grades of oil are considered

Both importing and exporting regions are price takers

With these new features, in a climate policy regime oil-exporting countries bear costs twice as large if compared to previous estimates, while oil-importing regions have lower costs

The Equations

2- The Model: Supply and Demand

Oil demand:

$$OIL(t,n) = \sum_{g} (OILPROD(n,t,g)) + NIPOIL(t,n)$$

$$OIL(t,n) = OIL_{EL}(t,n) + OIL_{NEL}(t,n)$$

$$(1)$$

Oil supply:

1

$$OILPROD(t, n, g) \le OILCAP(t, n, g)$$
 (3)

$$OILCAP(t+1,n,g) = OILCAP(t,n,g)(1-\delta) + ADDOILCAP(t,n,g)$$
(4)

$$ADDOILCAP(t, n, g) = \frac{I_{OILCAP}(t, n, g)}{OILCAP COST(t, n, g)}$$
(5)

2- The Model: The Oil Market, Oil and Non-Oil GDP

Equilibrium in international market of oil:

$$\sum_{n} NIPOIL(t, n) = 0 \quad \forall t$$
(6)

Oil and Non-Oil GDP:

$$Y(t,n) = Y_{NONOIL}(t,n) + Y_{OIL}(t,n)$$
(7)

$$Y_{NONOIL}(t,n) = \frac{Y_{NONOIL}(t,n)}{\Omega(t,n)} - OIL(t,n) [P_{OIL}(t) + MKUP_{OIL}(t,n)] - \sum_{z} X_{z}(t,n)$$
(8)

$$Y_{OIL}(t,n) = \sum_{g} (OILPROD(n,t,g)) P_{OIL}(t)$$
(9)

$$C(t,n) = Y(t,n) - \sum_{j} I_{j}(t,n) - \sum_{g} I_{OILCAP}(t,n,g) - \sum_{g} OILCAP(t,n,g)O \& M _COSTS$$

$$-\sum_{k} W_{k}(t,n)$$

$$(10)$$

2- The Model: The Oil Cost Function

Short term component

- We model the cost of oil extraction capacity, for eight grades of oil
- Two components:

•Short term component: avoids over-extraction in the short term

•Long term component: costs increase as the resource is exhausted

2- The Model: The Oil Cost Function

Cumulative production (Billion Barrels)

The oil extraction sector:

$$CUMOILPROD(t, n, g) = \sum_{s=1}^{t-1} OILPROD(t, n, g)$$
(12)

$$OILRES(t+1,n,g) = OILRES(t,n,g)(1+\mu_g(t)) \quad \text{now } \mu_g(t) = 0$$
(13)

 $CUMOILPROD(t, n, g) \le OILRES(t, n, g)$ (14)

3- Data: Cost of Extraction Capacity

Production Cost ranges

Us \$ 2005 per barrel of oil equivalent	Min	Max
G1	-	18
G2	18	29
G3	29	38
G4	38	53
G5	53	57
G6	57	78
G7	78	93
G8	93	240

Oil Cost: \$ per barrel of installed capacity

Us \$ 2005	Cost of extraction capacity (2)
G1	120
G2	190
G3	250
G4	350
G5	380
G6	520
G7	620
G8	1600

Source: Rogner 1997

PRESENTATION TITLE G1= Proved Recoverable Reserves G2= Estimated Additional Reserves G3= Additional Speculative Resources G4= Enhanced Recovery G5= Unconventional Recoverable Reserves G6= Unconventional Resources G7= Unconventional Additional Occurrences

 $\alpha(n,g) = \text{cost of extraction capacity}$

 $\operatorname{cost per barrel} = \frac{\alpha(n, g)(r + \delta)}{1}$ $\alpha(n, g) = \frac{\operatorname{cost per barrel}}{(r + \delta)}$

G8= Unconventional Additional Occurrences

3- Data: Oil Resources

Billion Barrels

Source: Adapted from Rogner, 1997

Region s \ Oil grades	USA	WEURO	EEURO	KOSAU	CAJAZ	TE	MENA	SSA	SASIA	CHINA	EASIA	LACA
G1	74	41	2	3	13	125	644	29	7	37	21	128
G2	75	15	1	2	13	100	125	25	2	34	12	65
G3	59	26	4	4	10	141	161	36	4	60	18	114
G4	139	37	5	5	24	172	412	40	6	54	25	139
G5	19	10	0	27	173	24	163	10	1	17	4	19
G6	800	56	4	189	570	142	290	37	2	309	35	671
G7	639	97	7	331	570	249	508	65	4	541	61	1174
G8	639	254	28	442	570	921	2045	218	26	870	169	1985

G1= Proved Recoverable Reserves G2= Estimated Additional Reserves G3= Additional Speculative Resources G4= Enhanced Recovery G5= Unconventional Recoverable Reserves
G6= Unconventional Resources
G7= Unconventional Additional Occurrences
G8= Unconventional Additional Occurrences

Total oil production (all categories) - BaU

CAJAZ and USA will increase oil production troughout the century Oil Production in LACA remains rather constant

PRESENTATION

TITLE

Consumption of oil - BaU

CHINA and SASIA are going to increase oil consumption Oil consumption in USA and Europe remained constant

PRESENTATION

TITLE

Oil production - USA

25.0 25.0 🗖 G8 🗖 G8 20.0 **G**7 **Billion Barrels** 20.0 **G**7 **Billion Barrels** 🗖 G6 15.0 🗖 G6 15.0 **G**5 **G**5 10.0 🗆 G4 10.0 🗆 G4 🗆 G3 5.0 🗖 G3 5.0 **G**2 **G**2 0.0 🗖 G1 🗖 G1 0.0 2005 2015 2085 2095 2015 2025 2035 2045 2055 2065 2025 2005 2015 20³⁵ 2045 2055 2065 2015 2085 2095 **Oil production - MENA Oil production - CAJAZ** 25.0 25.0 🗖 G8 🗖 G8 20.0 20.0 **Billion Barrels Billion Barrels** 🗖 G7 **G**7 15.0 15.0 **G**6 **G**6 **G**5 **G**5 10.0 10.0 🗆 G4 🗆 G4 5.0 🗖 G3 5.0 🗆 G3 **G**2 **G**2 0.0 0.0 🗖 G1 🗖 G1 2005 2085 2015 2025 2035 2045 2055 2065 2075 2085 2095 2005 2015 2015 2025 2000 2045 2055 2065 2095

Oil production - TE

Oil production in MENA is mainly from Conventional oil (G1)

Investments in the Oil Sector (all categories) - BaU

Oil Investments- USA

conventional oil (G1)

Oil Market - Net Imports - Bau

Oil imports in the USA remained rather constant CAJAZ will became an oil exporter region in 2050

Results: Stabilization Scenario

International market for carbon permits starting at 2010

Additional CO₂ emissions of non-conventional oil (grades 5 - 8) wrt to conventional are attributed to the extraction process and thus to countries that produce non-conventional oil

It is possible to have spare capacity, but it is never an optimal choice

Price of Carbon Allowances

Carbon price is going to increase in a climate policy regime

4 - Results: Stab

Total oil production (all categories) - Stab

PRESENTATION Oil production decrease over time.

MENA, CHINA, TE, LACA are the main producers at the end of the century

Consumption of oil - Stab

PRESENTATION TITLE Oil is mainly consumed in SASIA, LACA and CHINA at the end of the century

4- Results: Stab Oil production by grade – selected countries

23

4- Results: Stab

Investments in the Oil Sector (all categories) - Stab

PRESENTATION

TITLE

4- Results: Stab

Oil Market - Net Imports - Stab

Fondazione Eni Enrico Mattei

PRESENTATION TITLE TE and MENA are the main exporter countries SASIA is the main importer at the end of the century

Comparison: BaU and Stab

4- Results: Comparison

World Oil Consumption

PRESENTATION TITLE This result tend to conferm the theoretical model proposed by HOEL (2009)

4- Results: Comparison

How will investment decisions be affected when a cap on emissions is imposed throughout the century?

Total world Investments: Oil Sector (all categories)

How will these investments decisions shape oil supply and how will they affect international trade of oil and oil price?

PRESENTATION

TITLE

2085

International trade of oil is mainly driven by oil consumption

4- Results: Comparison

The cost of additional oil extraction capacity is lower in the stabilization scenario.
Under climate policy, cumulative oil production is about one half if compared to the BaU

4- Comparison with previous version of the model

4- Results: Comparison

World

		2005	2025	2045	2065	2085	2105
Oil GDP (%	6 of total GDP)						
	BaU	2.1%	2.3%	2.3%	2.4%	2.4%	2.4%
	Stab	2.1%	1.8%	0.7%	0.3%	0.2%	0.5%
Oil Investm	nents (%of total Inv	vestments)					
	BaU	6.9%	7.7%	8.9%	8.7%	8.4%	8.8%
	Stab	7.5%	4.9%	1.2%	0.9%	0.5%	0.4%

To what degree will oil exporting countries be able to restructure their production activities, to counter-act the threat to their economies, that a low-carbon world will poses ?

Discounted Stabilization Policy Costs (3% declining)

Introduction of a detailed description of the oil sector does not change global mitigation costs significantly but regional costs do vary greatly.

The value of oil traded decrease significantly in a climate policy regime.

Oil investments decrease significantly

Oil-exporting countries bear costs twice as large if compared to previous estimates.

When carbon emissions are constrained non conventional oil (grades 5 - 8) is not extracted.

