Integrated methodology for the management of uncertainty in climate change adaptation policies

> Michela Catenacci Fondazione Eni Enrico Mattei DAGO PhD Candidate – 21st Cycle Venice, 27 February 2009

Outline

- 1. Research topics
- 2. Research objectives
- 3. Methodology and tools
- 4. Application of the integrated methodological framework to the case study
- 5. Assessment of the outputs and uncertainty analyses
- 6. Discussion of the results and further research needs

Adaptation to SLR

"<u>Adjustment in ecological, social, or economic systems</u> in response to actual or expected climatic stimuli, and their effects or impacts. This term refers to changes in processes, practices or structures to <u>moderate or offset</u> <u>potential damages</u> or to <u>take advantage of opportunities</u> associated with changes in climate" (IPCC, 2001).

- "Hard" decision (Clemen and Reilly, 2001):
- Complexity of the issue;
- Multiple objectives and different perspecitives;
- Inherent uncertainty in the situation.

Uncertainty in climate change policy

Epistemic uncertainty

Aleatory uncertainty

Management of uncertainty

Three-step approach (Morgan, 2008)

Incorporate uncertainty into the models:

- Sensitivity analysis
- Uncertainty propagation
- Learning

 Interfaces and graphical structures

Objectives of the research

- The main objective of the research is to explore and define a **replicable methodological framework**, to guide the assessment process of **alternative adaptation policies** to the impacts of SLR.
- The study investigates the potential synergies of combining tools and approaches, in order to characterise, incorporate and communicate the uncertainty.

- Innovative methodological framework
- Application of the Bayesian network tool to CC policy issues
- □ Original approches to carry out **uncertainty analyses**

Integrated methodology

Key tool: Bayesian network (BN)

Bayesian Decision network (BDN)

Methodological flow

Expert judgment elicitation (EJE)

- Deal with complex phenomena characterised by lack or scarcity of data
- Overcome uncertainty limits of analytic modelling and draw future projections
- Enhance the interaction and the synergies of interexperts discussions
- Provide subjective probabilities for feeding the BN model, verify an fine-tune information obtained from other sources
- Support **decision-making** processes

Ad hoc protocols for EJE Introductory assessment **Selection of the elicitation components Elicitation process Analysis procedures**

*(Morgan and Henrion (1990), Keeney and Von Winterfeldt (1991), Meyer and Booker (1991), Phillips (1999) etc.

Case study: the lagoon of Grado and Marano

Phase 1: Conceptual modelling

- 1. Group elicitation: workshop with the experts
- 2. Cognitive map of the system (DPSIR framework)
- 3. Ranking of the impacts
- 4. Identification of adaptation measures

Phase 2: Structuring the BDN

Controlling factor: SLR

Decision nodes

Restoration of salt marshes:

- Enhance the capacity of the lagoon to comprensate the erosive and levelling effects of SLR
- Highly auto-adaptive capacity

Beach nourishment:

- •Protection from marine ingression; control of erosion; dissipation of wave strength
- Increase the economic value of beaches

Chance nodes

Discretization into a set of mutually exclusive and exhaustives <u>STATES</u> of each node

Value nodes

	Expected values (€)							
Value nodes	Strong decrement (-40%)	Weak decrement (- 20%)	Status quo	Weak increment (+ 20%)	Medium increment (+ 40%)	Strong increment (+ 60%)		
Clam culture	876,576.00	1,168,768.00	1,460,960.0 0	1,753,152.00	2,045,344.00	2,337,536.00		
Fishery in lagoon	279,174.20	372,232.27	465,290.34	558,348.41	651,406.47	744,464.54		
Agriculture	113,767,323.12	151,689,764.16	189,612,20 5.20	227,534,646.24	265,457,087.28	303,379,528.32		
Tourism	140,244,432.00	186,992,576.00	233,740,72 0.00	280,488,864.00	327,237,008.00	373,985,152.00		

BDN: Salt marshes

BDN: Beach nourishment

Phase 2: Populating the BN

+30cm No Adaptation

+30cm Salt Marshes

+30cm Beach Nourishment

Analyses

Correlation analysis among the experts' answers: Pearson's correlation.

Policy analyis: assessment of adaptation alternatives in terms of aggregate and sectoral expected losses.

Local uncertainty analysis: effects of variations in one node at a time on the outputs; identification of the most influencing nodes;

Global uncertainty analysis: assessment of the variability of the outputs arising from the simultaneous variation of the nodes' CPTs;

Uncertainty in SLR scenarios: sensitivity of the outputs to variations in the probability of SLR

Pearson's correlation

Nodes	Experts						
		A1	A2	A3			
Volume of	A1	1					
the lagoon	A2	0.897674 1					
geen geen	A3	-0.59052	-0.4998	1			
		B1	B2	B3			
Loss of	B1	1					
dry land	B2	0.949305	1				
	B3	0.978307	0.954085	1			

Aggregate outputs

Sectoral outputs

Local uncertainty analysis (1)

Local uncertainty analysis (2)

Global uncertainty analysis (GUA)

GUA: Frequency distributions

F

10 -			10			
Scenario	Option	Mean	Median	Max	Min	Std.Dev.
0-30cm	No Adapt	-88.89	-98.82	-5.51	-143.04	44.07
	Marshes	-86.68	-94.75	-3.92	-141.73	44.70
	Nourishment	-56.53	-65.57	51.43	-142.37	51.04
30cm-50cm	No Adapt	-96.56	-108.76	-14.50	-147.89	44.91
	Marshes	-92.08	-99.59	-11.58	-143.67	45.18
	Nourishment	-66.69	-73.52	39.41	-145.05	51.87
	No Adapt	-107.19	-121.35	-23.69	-157.59	45.44
50cm-1mt	Marshes	-102.15	-114.52	-20.38	-153.29	45.66
	Nourishment	-90.13	-106.00	-3.50	-151.49	46.74
16-						
Test for Equality of Medians Between NoAdapt and Marshes						
Method		Value	F	Probability		
Wilcoxon/Mann-Whitney 0.537617 0.590					0.5908	
Kruskal-W	allis	1	0.291277		0.5894	
Test for Equality of Medians Between No Adapt and Nourishment						
Wilcoxon/Mann-Whitney 3.686217 0.000					0.0002	
Kruskal-Wallis 1 13.60356					0.0002	

GUA: Comparison btw series

GUA: Cumulative relative frequency

Likelihood evidence of SLR scenarios (1)

Likelihood evidence of SLR scenarios (2)

Expected Losses (%)							
	+30cm	LowerBound	Nominal	UpperBound	+50	+1mt	
NoAdapt	-21.41	-21.66	-22.61	-23.32	-23.88	-26.01	
Marshes	-20.66	-20.85	-21.67	-22.29	-22.61	-24.91	
Nourish.	-15.57	-15.83	-17.11	-18.12	-18.23	-23.01	

Conclusions: methodology (1)

- The **BN tool** emerges as a **synthesis model**, which allows the user to:
- integrate knowledge and data from different fields in a single framework of analysis
- assess alternative "what-if" management approaches
- structure policy recommendations, to define policy scenarios and to identify optimal policy choices
- take into account key uncertainties in models' hypotheses and outputs
- characterise the uncertainty of the models' hypotheses and outputs in a stochastic framework;
- incorporate the uncertainty into Bayesian models through updating processes (ADAPTIVE management);
- communicate the uncertainty to the policy makers through the BNs' user-friendly graphical interface.

Conclusions: methodology (2)

The proposed methodology:

- Provides a fully-functional tool to support policy makers in the assessment of future scenarios of global change, and in the design of effective, equitable and efficient policies;
- Enhances the interaction among the experts, and the communication between science and policy
- Can be tailored for the assessment of different CC policy issues

Conclusions: policy

- The aggregate outputs of the BDN model demonstrated that the implementation of the "beach nourishment" option would lead to higher expected benefits (lower exp. losses) than the "restoration of salt marshes", but the marginal benefits would decrease with higher SLR scenarios
- The "restoration of salt marshes" would not bring to important limitations in the expected losses, except for clam culture activity. Sectoral outputs do not always reflect aggregate results.

Implications for further research

- Expand the BDN, subdividing it into **sub-models**
- Integration of expert knowledge with data from models and/or empirical studies
- Take feedbacks into account into a Bayesian dynamic network
- Include a phase of engagement of local stakeholders and decision-makers
- Carry out a CBA, considering also the monerary value of non-market goods
- Carry out a MCA, considering different measures of utility

Few references

Clemen, R.T., Reilly, T., (2001), *Making Hard Decisions with Decision Tools*, Duxbury Thomson Learning, Pacific Grove, CA.

Congressional Budget Office, (2005), Uncertainty in Analyzing Climate Change: Policy Implications, The Congress of the United States, Washington DC.

- IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties.
- Hobbs, B., (1997), "Bayesian methods for analysing climate change and water resource uncertainties", *Journal of Environmental Management*, 49(1), 53-72.
- Keeney, R.L., Raiffa, H., (1976), *Decisions with Multiple Objectives: Preferences and Values Tradeoffs*, Wiley, New York.
- Morgan, M.G., (2008), Best Practice Approaches for Characterising, Communicating and Incorporating Scientific Uncertainty in Climate Decision Making, U.S. Climate Science Program, Synthesis and Assessment Product 5.2, Under public review.
- Morgan, M.G., Henrion, M., (1990), *Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis*, Cambridge University Press, Cambridge.
- Reckhow, K.H., (2002), Bayesian approaches in ecological analysis and modelling, in: *The Role of Models in Ecosystem Science*, Charles D. Canham, Jonathan J. Cole, and William K. Lauenroth, Eds. Princeton University Press
 Stern, N. (Eds.) (2006), *Stern Review on the Economics of Climate Change*, HM Treasury, London.