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Outline of Presentation

Empirical evidence on spillovers and motivation 
of the analysis 

Spillovers in the Witch model with directed 
technical change

Major findings

Concluding remarks
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Spillovers: empirical evidence 

Most Empirical works find that estimated R&D spillovers are 
significant and positive

Both Domestic and International knowledge spillovers have
a significant impact on innovations and productivity

Spillovers are mainly domestic (more national than
international in scope)

Inter-sectoral spillovers are extremely significant
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Why to include spillovers?

Even if the description of technical change in integrated model for 
climate policy analysis has greatly improved, current approaches 
rarely include knowledge externalities.

Without spillovers, models unrealistically assume that advance of 
technological frontiers of different sectors are mutually independent 
and omit to consider the interactions among different drivers of 
technical change.
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Motivation of the analysis

We introduce inter-sectoral spillovers in the WITCH model 
with directed technical change, i.e. R&D expenditures are factor 
specific and can be directed towards increasing energy-
efficiency or towards rising productivity of non-energy 
inputs.

The directed technical change approach allows to explicitly 
modeling spillovers across the two R&D capital stocks. We can 
thus study the effect that modeling inter-sectoral knowledge 
spillovers has on the advances of the technological frontier
and on the costs of climate policy.
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WITCH with Directed Technical Change
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Production Function
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Output is produced combining capital-labour services (KLS) and energy 
services (ES) and is reduced by climate damage:

KLS is produced combining the capital-labour (KL) aggregate and the stock of 
capital-labor knowledge (HKL):

(1)

(2)

(3)
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ES is produced aggregating the energy (EN) and the stock of energy knowledge 
(HE):

(4)
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R&D Sector
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Production of new ideas follows an “innovation possibility frontier” 
specification with intra-sectoral and inter-sectoral spillovers and 
diminishing returns:

( ) ihg
HKLHKL tnHEtnHKLtnI f tnZ ),(),(),(, =

( )tnZtn HKL) tHKL(n HKL ,)1)(,(1, +−=+ δ

(7)

(8)

(6)

(5)

Knowledge stocks are increased by the flow of new ideas and are subject 
to depreciation
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Calibration of the Innovation possibility frontier

( ) 16.037.018.0 ),(),(),(, tnHEtnHKLtnI f tnZ HKLHKL =

( ) 16.037.018.0 ),(),(),(, tnHKLtnHEtnI a tnZ HEHE =

 Domestic 
own-sector 

Domestic 
other-sectors  

International

Keller (2002) 51% 30% 19% 
Frantzen (2002) 24%-41% 23%-39% 36%-38% 

 Domestic 
private 

Domestic 
spillovers 

Domestic 
Intra-sectoral 

Domestic 
Inter-sectoral  

International 
Spillovers 

Malerba (2007) 14%-21%  32%-65% 11%-16% 10%-35% 
Bottazzi, Peri 
(2007) 

24%-46% 30%-0.62%   15%-38% 

 

Relative contribution of  different sources of Knowledge to Productivity
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Business as Usual

GWP increases over the whole century at a declining rate
Energy Intensity declines 
Carbon Intensity increases
Carbon emission increases
R&D expenditures, as share of GWP, slightly increase
because of increasing path of Non-Energy R&D investments, 
while Energy R&D expenditures, as share of GWP, decline

2005 2025 2045 2065 2085 2105
GWP (Trillions, 2005 USD) 44 87 150 224 300 365
World Population (billions) 6.5 8.0 9.0 9.5 9.5 9.0

Energy Intensity of Output 10.1 7.3 5.5 4.3 3.6 3.1
Carbon Intensity of Primary Energy 0.018 0.018 0.019 0.020 0.021 0.020
Concentrations of GHG (ppmv) 427 506 623 753 881 996

R&D expenditure (%GWP) 1.682% 1.756% 1.760% 1.762% 1.744% 1.661%
Non-energy R&D (%GWP) 1.666% 1.742% 1.746% 1.748% 1.731% 1.648%
Energy R&D (%GWP) 0.016% 0.014% 0.014% 0.014% 0.013% 0.012%
Energy R&D (%Total Investment in R&D) 0.924% 0.818% 0.789% 0.775% 0.760% 0.742%
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Stabilization policy

- GWP, Consumption, Investment in Capital and Non-energy 
R&D, all decline

- Investment in Energy Efficiency R&D and Backstop R&D 
sharply increases

GWP Consumption
Final good Non_Energy R&D Energy R&D Backstop R&D

Baseline 4399 3459 829 76 0.61 0.80

Stabilization 4333 3435 784 71 1.11 2.88

-1.50% -0.68% -5.42% -6.81% 81.81% 72.25%

Investment
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R&D Investment

• The Energy to Non-Energy R&D investment ratio switches from a declining 
to a rising path both because of the increase in Energy investment and the 
decline of Non-Energy investment
• As a result Total R&D investment declines

Energy to Non Energy R&D Investment Ratio 
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R&D dynamics

Non-Energy R&D decreases less and Energy R&D increases 
less with respect to the model without knowledge externalities

Percentage change of Investments in Non-Energy R&D: 
stabilization wrt bau
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R&D dynamics

( ) 16.037.018.0 ),(),(),(, tnHEtnHKLtnI f tnZ HKLHKL =

( ) 16.037.018.0 ),(),(),(, tnHKLtnHEtnI a tnZ HEHE =

The increase in energy knowledge increases the marginal 
product of investment in Energy R&D
The decrease in Non-Energy knowledge decreases the 
marginal product of  Non-Energy R&D
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Change of R&D investments

If spillovers are internalized total R&D investments increase
because of a greater increase in Energy R&D and a lower
contraction in Non-Energy R&D than when spillovers are either
not internalized or not modelled

% Change of  R&D investments wrt BaU
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The Cost of the Stabilization Policy  

When spillovers are introduced the cost of policy decreases.

When spillovers are internalized the cost of policy decreases
the most.

Stabilization Cost 1.66% 1.50%

No Spillovers Spillovers

Stabilization Cost 1.66% 1.50% 0.98%

Stabilization Policy and 
Spillovers InternalizedNo Spillovers Spillovers
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Concluding remarks

Even in a model with intersectoral spillovers Total R&D drops because
of the sharp reduction in Non-energy R&D investment

However domestic spillovers reduce the impact of the mitigation 
policy on R&D investments 

As a result, the cost (in terms of GWP losses) of the mitigation policy is 
reduced

There is the potential for a synergy between mitigation policy and 
policy that overcomes market failures in the R&D sector
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