

#### **FEEM Seminar**

Milan, February 27, 2009

Optimal R&D Investments and the Cost of GHG
Stabilization when Knowledge Spills across Sectors

Carlo Carraro, Emanuele Massetti, Lea Nicita

Lea Nicita
FEEM and CMCC

### **Outline of Presentation**

- Empirical evidence on spillovers and motivation of the analysis
- Spillovers in the Witch model with directed technical change
- Major findings
- Concluding remarks



## Spillovers: empirical evidence

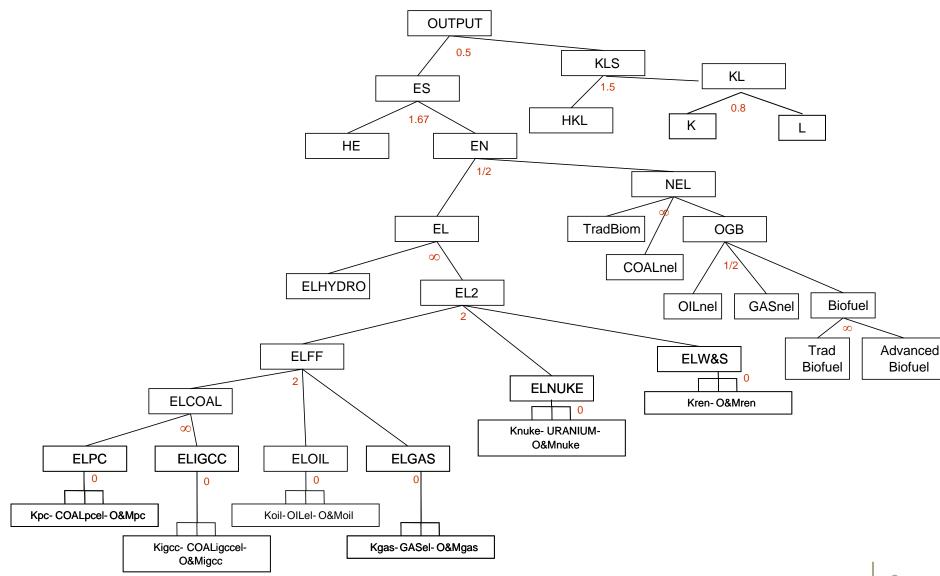
- Most Empirical works find that estimated R&D spillovers are significant and positive
- Both Domestic and International knowledge spillovers have a significant impact on innovations and productivity
- Spillovers are mainly domestic (more national than international in scope)
- Inter-sectoral spillovers are extremely significant



## Why to include spillovers?

- Even if the description of technical change in integrated model for climate policy analysis has greatly improved, current approaches rarely include knowledge externalities.
- Without spillovers, models unrealistically assume that advance of technological frontiers of different sectors are mutually independent and omit to consider the interactions among different drivers of technical change.




### Motivation of the analysis

- We introduce inter-sectoral spillovers in the WITCH model with directed technical change, i.e. R&D expenditures are factor specific and can be directed towards increasing energyefficiency or towards rising productivity of non-energy inputs.
- The directed technical change approach allows to explicitly modeling spillovers across the two R&D capital stocks. We can thus study the effect that modeling inter-sectoral knowledge spillovers has on the advances of the technological frontier and on the costs of climate policy.





# WITCH with Directed Technical Change



#### **Production Function**

Output is produced combining capital-labour services (KLS) and energy services (ES) and is reduced by climate damage:

$$Y(n,t) = \frac{TFP(n,t)\left[\alpha_Y(n) \cdot KLS^{\rho_Y} + (1-\alpha_Y(n)) \cdot ES(n,t)^{\rho_Y}\right]^{1/\rho_Y}}{\Omega(n,t)}$$
(1)

KLS is produced combining the **capital-labour** (KL) aggregate and the stock of **capital-labor knowledge** (HKL):

$$KLS(n,t) = \left[\alpha_{HKL}(n)HKL(n,t)^{\rho_{KLS}} + \alpha_{KL}(n)KL(n,t)^{\rho_{KLS}}\right]^{\gamma_{\rho_{KLS}}}$$
(2)

$$KL(n,t) = \left[\alpha_K(n)K(n,t)^{\rho_{KL}} + \alpha_L(n)L(n,t)^{\rho_{KL}}\right]^{\frac{1}{\rho_{KL}}}$$
(3)

ES is produced aggregating the **energy** (EN) and the stock of **energy knowledge** (HE):

$$ES(n,t) = \left[\alpha_{HE}(n)HE(n,t)^{\rho_{ES}} + \alpha_{EN}(n)EN(n,t)^{\rho_{ES}}\right]^{1/\rho_{ES}}$$
(4)



#### **R&D Sector**

Knowledge stocks are increased by the flow of **new ideas** and are subject to **depreciation** 

$$HKL(n,t+1) = HKL(n,t)(1-\delta) + Z_{HKL}(n,t)$$
(5)

$$HE(n,t+1) = HE(n,t)(1-\delta) + Z_{HE}(n,t)$$
(6)

Production of new ideas follows an "innovation possibility frontier" specification with intra-sectoral and inter-sectoral spillovers and diminishing returns:

$$Z_{HKL}(n,t) = f I_{HKL}(n,t)^g HKL(n,t)^h HE(n,t)^i$$
(7)

$$Z_{HE}(n,t) = a I_{HE}(n,t)^b HE(n,t)^c HKL(n,t)^d$$
(8)



## Calibration of the Innovation possibility frontier

Relative contribution of different sources of Knowledge to Productivity

|                      | Domestic own-sector | Domestic other-sectors | International |  |
|----------------------|---------------------|------------------------|---------------|--|
| <b>Keller</b> (2002) | 51%                 | 30%                    | 19%           |  |
| Frantzen (2002)      | 24%-41%             | 23%-39%                | 36%-38%       |  |

|                       | Domestic | Domestic   | Domestic       | Domestic       | International     |
|-----------------------|----------|------------|----------------|----------------|-------------------|
|                       | private  | spillovers | Intra-sectoral | Inter-sectoral | <b>Spillovers</b> |
| <b>Malerba</b> (2007) | 14%-21%  |            | 32%-65%        | 11%-16%        | 10%-35%           |
| Bottazzi, Peri        | 24%-46%  | 30%-0.62%  |                |                | 15%-38%           |
| (2007)                |          |            |                |                |                   |

$$Z_{HKL}(n,t) = f I_{HKL}(n,t)^{0.18} HKL(n,t)^{0.37} HE(n,t)^{0.16}$$

$$Z_{HE}(n,t) = a I_{HE}(n,t)^{0.18} HE(n,t)^{0.37} HKL(n,t)^{0.16}$$

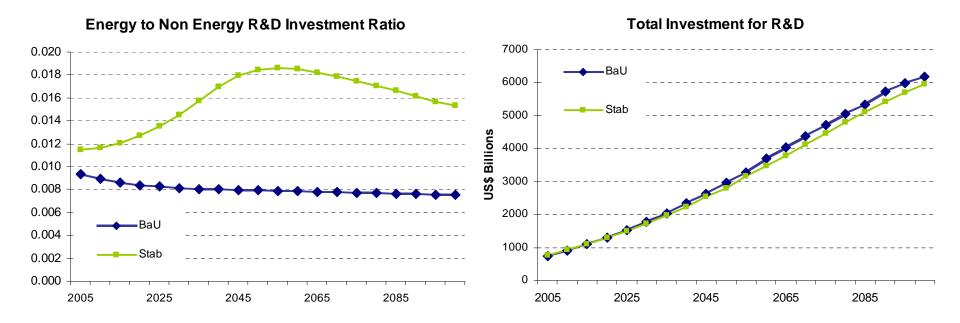


#### **Business as Usual**

|                                       | 2005   | 2025   | 2045   | 2065   | 2085   | 2105   |
|---------------------------------------|--------|--------|--------|--------|--------|--------|
| GWP (Trillions, 2005 USD)             | 44     | 87     | 150    | 224    | 300    | 365    |
| World Population (billions)           | 6.5    | 8.0    | 9.0    | 9.5    | 9.5    | 9.0    |
| Energy Intensity of Output            | 10.1   | 7.3    | 5.5    | 4.3    | 3.6    | 3.1    |
| Carbon Intensity of Primary Energy    | 0.018  | 0.018  | 0.019  | 0.020  | 0.021  | 0.020  |
| Concentrations of GHG (ppmv)          | 427    | 506    | 623    | 753    | 881    | 996    |
| R&D expenditure (%GWP)                | 1.682% | 1.756% | 1.760% | 1.762% | 1.744% | 1.661% |
| Non-energy R&D (%GWP)                 | 1.666% | 1.742% | 1.746% | 1.748% | 1.731% | 1.648% |
| Energy R&D (%GWP)                     | 0.016% | 0.014% | 0.014% | 0.014% | 0.013% | 0.012% |
| Energy R&D (%Total Investment in R&D) | 0.924% | 0.818% | 0.789% | 0.775% | 0.760% | 0.742% |

- GWP increases over the whole century at a declining rate
- Energy Intensity declines
- Carbon Intensity increases
- Carbon emission increases
- R&D expenditures, as share of GWP, slightly increase because of increasing path of Non-Energy R&D investments, while Energy R&D expenditures, as share of GWP, decline

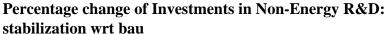


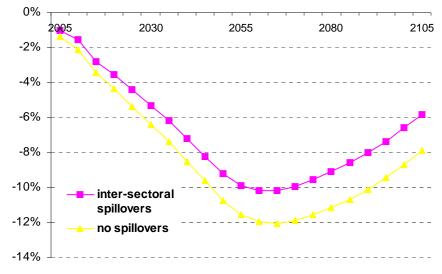

### Stabilization policy

|               | GWP    | Consumption | Investment |                |            |              |
|---------------|--------|-------------|------------|----------------|------------|--------------|
|               |        |             | Final good | Non_Energy R&D | Energy R&D | Backstop R&D |
| Baseline      | 4399   | 3459        | 829        | 76             | 0.61       | 0.80         |
| Stabilization | 4333   | 3435        | 784        | 71             | 1.11       | 2.88         |
|               | -1.50% | -0.68%      | -5.42%     | -6.81%         | 81.81%     | 72.25%       |

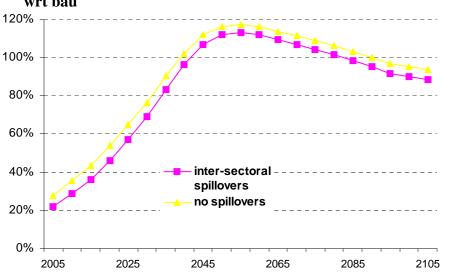
- GWP, Consumption, Investment in Capital and Non-energy R&D, all decline
- Investment in Energy Efficiency R&D and Backstop R&D sharply increases




#### **R&D Investment**




- The **Energy to Non-Energy** R&D investment ratio switches from a declining to a **rising path** both because of the increase in Energy investment and the decline of Non-Energy investment
- As a result **Total R&D** investment **declines**




## **R&D** dynamics





### Percentage change of Investments in Energy R&D: stabilization wrt bau

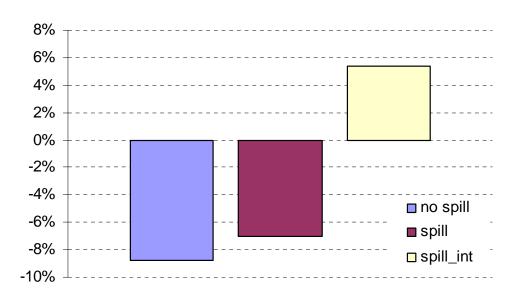


Non-Energy R&D decreases less and Energy R&D increases
 less with respect to the model without knowledge externalities



## R&D dynamics

$$Z_{HKL}(n,t) = f I_{HKL}(n,t)^{0.18} HKL(n,t)^{0.37} HE(n,t)^{0.16}$$


$$Z_{HE}(n,t) = a I_{HE}(n,t)^{0.18} HE(n,t)^{0.37} HKL(n,t)^{0.16}$$

- The increase in energy knowledge increases the marginal product of investment in Energy R&D
- The decrease in Non-Energy knowledge decreases the marginal product of Non-Energy R&D



# **Change of R&D investments**

% Change of R&D investments wrt BaU



 If spillovers are internalized total R&D investments increase because of a greater increase in Energy R&D and a lower contraction in Non-Energy R&D than when spillovers are either not internalized or not modelled



### The Cost of the Stabilization Policy

|                    | No Spillovers | Spillovers | Stabilization Policy and Spillovers Internalized |
|--------------------|---------------|------------|--------------------------------------------------|
| Stabilization Cost | 1.66%         | 1.50%      | 0.98%                                            |

- When spillovers are introduced the cost of policy decreases.
- When spillovers are internalized the cost of policy decreases the most.



## **Concluding remarks**

- Even in a model with intersectoral spillovers Total R&D drops because of the sharp reduction in Non-energy R&D investment
- However domestic spillovers reduce the impact of the mitigation policy on R&D investments
- As a result, the cost (in terms of GWP losses) of the mitigation policy is reduced
- There is the potential for a synergy between mitigation policy and policy that overcomes market failures in the R&D sector

