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Abstract 

The EU carbon market serves as an innovative financial instrument with the primary objective of contributing to mitigate the impacts of climate change. This market 

demonstrates significant interconnectedness with fossil energy, precious metal, and financial markets, although limited research has focused on the causality, 

dependency, intensity and direction of time-varying spillover effects. This study aims to investigate the causality direction, degree of dependency structure, and 

volatility transmission from Brent Oil, UK Natural Gas, Rotterdam Coal, Gold, Silver, Copper, and EuroStoxx600 future prices to EU Allowances during different 

periods of EU market. To achieve these objectives, this paper proposes a novel methodological approach that combines the most recent econometrics methods, such 

as Directed Acyclic Graph analysis, C-Vine Copula models, and Time-Varying parameter Vector Auto Regressive models with Stochastic Volatility with the use of 

a comprehensive sample of daily data from 26 April 2005 to 31 December 2022. The major findings of this study demonstrate that causality predominantly runs 

from energy, metal, and financial markets to the EU carbon market. The dependency structure, although varying across different sub-periods, shows a strong 

relationship observed between oil, coal, silver, copper, EuroStoxx600, and CO2 market. Additionally, the oil and copper futures prices exhibit the highest dependence 

on EUA prices. Furthermore, the study establishes that the EU carbon market is a net receiver of shocks from all other markets, with the energy, metal, and financial 

markets significantly influencing volatility in EUA prices. The time-varying spillover effect is most pronounced with a one-day lag, and the duration of the spillover 
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effects ranges from 2 to 15 days, gradually diminishing over time. These results have the potential to increase the understanding of the EU carbon market and offer 

practical guidance for policymakers, investors, and companies involved in this domain. 

Keywords: Causality direction, Dependency structure, EU-ETS, Time-varying spillover 

JEL Classifications: O52, Q43, Q54. 

 

1.Introduction 

Global warming is currently a pressing environmental issue that has attracted significant attention. Its increasing severity, stemming from greenhouse 

gas emissions, presents a formidable challenge to sustainable development, prompting widespread global concern. Carbon dioxide (CO2), primarily 

emitted through human activities, stands as the principal component of greenhouse gases. The 2022 report by the Intergovernmental Panel on Climate 

Change (IPCC) highlights that CO2 emissions contribute to 79.2% of global greenhouse gases (e.g. IPCC, and Liu et al., 2022). 

As CO2 emissions worsen, an increasing number of countries, including the EU, the US, Australia, Japan, and China, have swift ly established carbon 

emission trading markets since the Kyoto Protocol. In 2001, the European Commission took the initiative to implement the first and largest cap-and-

trade carbon trading scheme. The scheme places an emissions cap on major European CO2 emitters through the allocation of tradable EU Allowances 

EUA. The European Union Emissions Trading System (EU-ETS) has been structured into four distinct phases: phase I from 2005 to 2007, phase II 

from 2008 to 2012, phase III from 2013 to 2020, and the recently started last phase from 2021 up to2030. Presently, EU-ETS stands as the world's 

active, efficient, and largest carbon emissions trading system, covering about 45% of greenhouse gas emissions from the EU (e.g. Jiang and Chen, 

2022).  

In tandem with its rapid development and consistent expansion in size, liquidity, trading volume, and complexity, the EU-ETS market has demonstrated 

a progressively strong association with various other markets. Specifically, over the past decade, the EUA has been associated with an increasing price 

volatility. Upon analyzing the EUA future prices (refer to Figure 1) during the initial phase of the EU-ETS (2005–2007), the prices started at 

approximately € 17.55 and surged to a peak of € 31.5 on April 18, 2006, subsequently maintaining a range of € 0–20 until December 17, 2007. Notably, 

the price experienced a significant increase of over 50% in December 2007, settling at around € 22 until the conclusion of phase I. The second phase 
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commenced on January 1, 2008, with EUA future prices fluctuating between € 10 and € 30, peaking on July 1, 2008. Thereafter, prices gradually 

declined from July 2008 to February 2009, reaching a trough during that period. They continued to fluctuate in the range of € 10–20 until 2011, when 

a decline began, eventually dropping to less than € 10 in December 2011. Throughout the rest of the second phase, prices remained steady between € 

5 and € 10. Transitioning into the third phase on January 1, 2013, EUA prices initiated trading at approximately € 6.37, but, within four months, quickly 

decreased to around € 3, hitting again a trough. Subsequently, from May 2013 onward, prices gradually increased and remained relatively stable, 

oscillating between € 3 and € 10 until March 2018. Notably, in early March 2018, the EUA prices experienced a gradual increase from € 11 to € 33, 

reaching a peak of € 33.29 on December 28, 2020. With the onset of the fourth phase in January 2021, a sharp increase and considerable fluctuations 

were observed in the EUA future prices, initiating from € 33.56. Additionally, the prices gradually increased throughout 2020, doubling in September 

2020 and ultimately reaching a peak of € 97.59 on August 19, 2022. Since the end of 2023, the EUA prices have exhibited volatility, fluctuating within 

the range of € 60-90.  

[FIGURE 1 ABOUT HERE] 

The drivers behind such volatility in the carbon market are multifaceted, stemming from internal fluctuations and interactions with other interconnected 

markets. Several important factors considerably contribute to the heightened volatile behavior of the carbon market. These factors can be broadly 

grouped into four categories: degree of integration with macroeconomic, financial, and commodity markets; uncertainty concerning carbon allowance 

demand; fluctuations in energy prices; influence of speculators on the volatility levels of the carbon market. Given the potential interconnections 

between the carbon market and various other markets, considerable interest has been sparked among scholars, regulators, investors, and risk managers 

on this topic. As a result, an extensive body of research has been undertaken to explore aspects related to volatility spillover and market 

interconnectedness (e.g. Wu et al., 2022). 

Numerous studies (e.g., Chevallier et al., 2008; Hammoudeh et al., 2014; Rodríguez, 2019; Jiang and Chen, 2022) consistently find that energy prices, 

particularly coal prices, significantly influence EUA prices due to several reasons. First, lower fossil energy prices can result in increased energy 

consumption, leading to higher demand for carbon emissions and carbon prices. Secondly, increased fossil energy consumption, driven by global 
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population growth and ongoing economic development, especially in developing countries, lead to higher carbon emissions and carbon prices. Lastly, 

the sensitivity of energy use to weather changes varies across different seasons. 

However, divergent conclusions are drawn regarding the transmission of volatility between financial, metal and carbon markets. Existing research lacks 

robust methodological foundations to establish the importance of those markets in influencing EUA volatilities. Due to increasing globalization, 

financialization, and integration of carbon markets with other international markets, there is strong indication that the financial and metal markets are 

interconnected with EUA prices. In recent years, all markets with an international dimension have witnessed increased uncertainty, and this has led to 

significant fluctuations in energy, metal, and carbon prices. Given the distinctive financial attributes characterizing energy, metal, and carbon markets, 

an increase in speculative activities across these markets facilitates their interconnectedness, thereby amplifying the cross-spillover effects. Hence, 

understanding the connectedness between EUA prices and the financial market is essential, as EUA price fluctuations may impact the economic 

incentives and cost of manufacturing companies and could be reflected in the stock market. On the other hand, specific metals, such as gold, silver, and 

copper (used in fuel cells), are essential for the development of clean energy. As a result, the metal market has become a vital source of raw materials 

for clean energy production. Changes in metal prices affect the cost of industrial manufactures and, consequently, the demand for energy and carbon 

emissions. Therefore, formal investigations are necessary to determine causality, degree of connectedness, and potential spillover effects between EUA 

prices and other markets (e.g. Adekoya et al., 2021). 

To address the limitation of the existing literature, in this paper we introduce the following novel contributions. First, we test causality using the 

Directed Acyclical Graph (DAG) non-parametric approach. Second, to gain a clear understanding of the interconnections and the degree of 

dependencies among the carbon-energy-financial-metal markets, we employ the C-Vine-Copula model to capture information about both upper and 

lower tail dependencies among the connected markets. Copula functions are able to capture multi-dependence co-movement, different types of 

dependency structures, and the degree of dependency among markets (Bouri and Kamal, 2023). Third, to assess the spillover effects among the 

identified interconnected markets, in this paper we use the Time-Varying Parameter Vector Auto Regressive Stochastic Volatility (TVP-VAR-SV) 

model. This approach allows us to estimate both static and time-varying spillovers, considering the impacts of each markets on all the others and the 

total pairwise spillovers (Yousaf et al., 2023).  
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By employing these set of integrated methodologies, we aim to obtain more reliable and comprehensive insights into the dynamics and 

interconnectedness of the markets under analysis, in order for policymakers and stakeholders to shape more accurate decision-making procedures.  

To sum up, this paper conducts in-depth research to understand the direction of causality, degree of connectedness, and the potential spillover effects 

among energy, metal, financial and carbon markets by employing advanced and comprehensive methodologies. Our results are crucial for interpreting 

volatility transmission among the carbon-energy-metal-stock markets (CEMS) and promoting the stable establishment of ETS in countries outside the 

EU. Our results also help policy maker to timely detect and handle financial risks generated in CEMS markets, and provide valuable insights for 

investors and companies to make more accurate predictions of both returns and volatilities. 

The rest of the paper is structured as follows. The relevant literature review is reported in Section 2. Section 3 is devoted to illustrate the essential 

elements of DAG, C-Vine Copulas, and TVP-VAR-SV models, as well as to describe the dataset. The empirical results are discussed in Section 4. 

Section 5 concludes.  

2.Literature Review 

As carbon emission trading has emerged as one of the predominant approaches to contrast climate change globally, an increasing number of scholars 

have been investigating the potential for cross-market information spillovers among the energy-metal-financial-carbon markets. Table 1 presents a 

comprehensive overview of existing studies exploring the linkage between the carbon market and other markets. Notably, these studies can be 

categorized along different dimensions.  

In the context of energy-carbon market connectedness, several studies have explored the relationship between these markets. Cheavallier et al. (2008) 

pioneers in investigating the drivers behind the EU-ETS, using a GARCH model and daily data from July 1, 2005, to April 30, 2007. Their results show 

that carbon prices react to both energy prices and temperature changes. During the first phase of EU-ETS, energy prices, including Brent oil, natural 

gas, and coal, have a significant and positive effect on EUA prices. Hammoudeh et al. (2014) conduct a study using a Bayesian Structural VAR model 

and data from August 2006 to September 2011. They focus on explaining the short-term dynamics of carbon prices in response to changes in energy 

prices of oil, gas, coal, and electricity. Their findings prove that shocks in oil prices have initial positive effects followed by negative effects on carbon 
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prices. However, no spillover effects are found between gas, coal, and carbon markets. As for electricity, a positive shock in the price has a negative 

impact on the price of EUA in the second phase. At the same time, Reboredo (2014) investigates the volatility spillovers between oil and carbon markets 

using a Multi-Conditional Auto Regressive Range model. The results suggest the existence of volatility dynamics and leverage effects but no significant 

volatility spillovers between these markets. Zhang and Sun (2016) employ an MGARCH model to study the dynamic volatility spillover impact from 

fossil energy prices, including oil, gas, coal, and electricity, to the carbon market from January 2, 2008, to September 30, 2014. The findings suggest a 

significant unidirectional volatility spillover from coal to the carbon market, while no spillover impacts are found from oil to carbon prices. Additionally, 

there is a significant correlation between energy and carbon markets. By conducting a multi-phase survey, Dhamija et al. (2017) examine the volatility 

spillover impact from energy to the carbon market using daily data from 2005 to 2015. Based on BEKK-MGARCH results, they show a high degree 

of volatility co-movement between carbon and energy prices, specifically Brent oil, coal, and natural gas. The results support the existence of small but 

significant volatility spillover from energy markets to EUA markets. Chevallier et al. (2019) employ the Vine-Copula approach to capture the 

conditional correlation between energy and carbon prices between January 1, 2010, and May 19, 2016. The outcomes suggest that carbon prices co-

move only weakly with oil, gas, coal, and switch energy prices, and the link to Brent oil and gas is significantly negative. Similarly, Chen et al. (2019) 

examine the dynamic correlation and volatility spillover between energy and carbon prices by considering an asymmetric BEKK model. They signal a 

relatively stable and positive correlation between carbon, Brent oil, and natural gas prices, while the correlation between carbon-gas and coal-carbon 

weaken and become more volatile during the second and third phase of EU-ETS, particularly after the Global Financial Crisis (GFC). Recently, Yoon 

and Lee (2020) survey time-varying correlations and dynamic spillovers between energy and carbon markets from October 23, 2009, to July 5, 2020. 

The results from VAR and BEKK-GARCH models demonstrate a weak volatility spillover effect among the markets, while a strong impact exists 

between carbon and Brent oil prices. Addressing the third phase of EU-ETS, Xiao et al. (2021) analyze the multiscale interplay of higher-order moments 

between carbon and energy markets using the Barunik-Krehlic model. The estimated results point out weak bidirectional high-order moments spillovers 

between the carbon and energy markets in the short-term, but it significantly increases in the long-term. During the same period, Ren et al. (2021) 

examine the marginal effects of energy prices on EUA prices using a Quantile-on-Quantile regression approach for estimation. The empirical results 

exhibit quasi-monotonic increase and negative impacts of oil and coal prices on carbon prices, with higher absolute values for the gas price effect. In a 

recent study, Lin et al. (2021) pay attention to the time-varying spillover mechanism between the carbon and energy markets using a TVP-VAR model. 
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Their outcomes from time-interval and time point response functions reveal time-varying spillover effects from the energy market, particularly coal 

prices, to the carbon market, but the effect reduces after three weeks. 

A limited number of studies has been devoted to the specific analysis of interactions between financial and carbon markets. Rodríguez (2019) uncover 

the causality direction between carbon and EU major indices, including CAC40, DAX, FTSE100, FTSEMIB, and IBEX, for the first, second, and half 

periods of EU-ETS. The results of the Toda-Yamamoto co-integration test, along with the causality Granger test, demonstrate a causality direction 

from stock indices to the carbon market. Aslan and Posch (2022) discover the volatility connectedness between FTSE300 and EUA prices, using the 

Diebold-Yilmaz method for the third and last phase of the EU-ETS. According to the outcomes, the carbon market is a net receiver of volatilities from 

the stock market, and this connection enhances during the latest energy crisis in the EU. 

Based on our knowledge, no prior investigation has been conducted concerning the linkage between the metal-carbon markets and the financial-metal-

carbon markets. However, there is research on the interconnectedness between the energy-financial-carbon markets and the energy-metal-carbon 

markets. The study of Bataller and Keppler (2010) is considered a pioneering work in the context of uncovering the causality direction between carbon-

energy-stock markets. Their contribution carries out for the first phase of EU-ETS. The results of Granger causality test imply causality direction are 

from energy, coal and gas to electricity market, and from electricity to EuroStoxx600 and carbon prices. Using a different approach, Venmans (2015) 

uncovers the response of the stock market to energy and carbon returns. Daily data from 2008 to 2010 are used, and a BEKK-CCC model is applied 

for the investigation. The findings show positively weak correlations between EUA and EuroStoxx600 prices. Lovcha et al. (2015) develop a Structural 

VAR model and use weekly data from the mid-second and first-half periods of EU-ETS to explore the determinants influencing carbon prices. The 

Stoxx indices are identified as a significant source of carbon price variations, but their impact has diminished recently, whereas the opposite trend is 

observed for coal prices. More recently, Zhao and Wang (2020) identify the driving factors behind EUA prices by employing a Structural Equation 

Model and using data from February 2015 to January 2020. The empirical outcomes suggest direct impacts of CAC40, SP500, and SP clean indices on 

carbon prices. Additionally, energy prices, including oil and gas, affect carbon prices through the stock market. Focusing on the third stage of EU-ETS, 

Kim et al. (2021) utilize a VAR model and Wavelet analysis to explore the relationship between energy-financial-carbon markets. The findings reveal 

a negative relationship between coal and carbon prices, while a positive relationship exists between Stoxx50 and EUA prices. Using a time-varying 
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analysis, Yuan et al. (2021), discover the drivers behind EUA in various time periods. A TVP-VAR model is used to capture the time-interval and also 

time point response of carbon prices to oil, gas, electricity, and EuroStoxx600 prices. Results imply that the carbon price is more sensitive to energy, 

particularly oil, and stock prices in short-term, however the responses change in mid and long-term. A VAR-DCC-GARCH model is used to conduct 

the co-movement between EU-ETS, energy and financial markets between January 2010 and February 2021 by Salvador et al. (2021). Regarding the 

outcomes, the correlation between EUA-gas, EUA-oil, EUA-coal, EUA-EuroStoxx600 are positive, although not strong. Zoynul Abedin et al. (2023) 

conduct a comprehensive investigation into the causality direction, dynamic conditional correlation, and spillover effects among the energy, stock, and 

carbon markets spanning the period from December 16, 2010, to December 29, 2022. The findings suggest that the carbon market Granger-causes the 

stock market. Furthermore, the study highlights that natural gas emerges as the most significant contributor of shocks, whereas the stock market exhibits 

a comparatively lower impact as a shock contributor. The following study deals with spillover effects, in particular Wei et al. (2023), quantify the time-

varying connectedness effects among energy, financial, and carbon markets throughout all phases of the EU-ETS. To achieve this aim, they develop a 

TVP-VAR model in conjunction with the Diebold-Yilmaz spillover index. The findings indicate that the average total connectedness among the markets 

is not strong, but it exhibits significant fluctuations during periods such as the GFC and the COVID-19 pandemic.  

Another aspect of the literature that has received less attention concerns the relationship between energy, metal, and carbon markets. A recent study 

conducted by Adekoya et al. (2021) delve into the transmission of volatility between carbon-energy-metal markets using weekly data period from 

October 2009 to October 2020. The researchers apply a Generalized Forecasting Error Variance Decomposition model acts as the net receiver of 

volatility from energy and metal markets, with the exception of copper. More recently, Wu et al. (2022) address multidimensional risk spillovers among 

carbon-energy- nonferrous metal markets, utilizing daily data from July 1, 2015, to February 28, 2022. Evidence from GARCH with Skewness and 

Kurtosis (GARCH-SK) and Quantile VAR (QVAR) models suggests significant spillover effects among these markets. Notably, the coal market plays 

a central role in the carbon-energy-metal system. Likewise, Liu et al. (2022) employ a QVAR model to capture the dynamic linkage between energy-

metal- carbon markets during the period from April 1, 2008, to October 29, 2021. Results indicate a strong linkage between these markets, with an 

average connectedness of about 51%; however, spillover effects vary between different time periods. In another study, Jiang and Chen (2022) aim to 

understand the time-frequency connectedness among energy, carbon, and metal markets, specifically considering the impact of COVID-19, during the 
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period from January 1st, 2014, to March 1st, 2022. They employ the Diebold-Yilmaz spillover index in conjunction with the Barunik-Krehlic approach. 

The copper and silver price demonstrate higher explanatory power for carbon price fluctuations, particularly during the post-COVID-19 period.  

Our paper makes significant contributions to various aspects of the extant literature as summarized above. Specifically, our study focuses on exploring 

causality, connectedness, and spillover effects among carbon-energy-metal-financial markets from multiple perspectives. In contrast to many existing 

works that limit their research to the entire cycle or specific phases of the EU-ETS, our research covers several time spans, motivated by the different 

operating periods of the EU-ETS market and general economic conditions. When examining market relationships, many studies rely on Granger 

causality tests to determine the direction of the links, although it is well known that this approach is not aimed at revealing causality linkages. To 

analyze the spillover effects between the carbon and other markets, the main methods generally followed by the literature are simple techniques (such 

as the VAR, the MGARCH model, and the Diebold-Yilmaz variance decomposition spillover, alongside the Barunik-Krehlic approaches). In order to 

improve the limitations of those methods, our research approach not does only focus on the overall magnitude and direction of volatility spillovers but 

also sheds light on the dynamic change processes of these spillovers, which have often been overlooked in previous studies. Additionally, we pay 

careful attention to the time lag and periodicity of the time-varying spillover effect of returns among the markets. Our study also extends the examination 

of market relationships beyond spillover effects between energy-carbon markets or energy-financial-carbon markets. We delve into the directional 

linkage between the metal and carbon market, filling a gap in the existing literature. Notably, we observe that the level of connectedness between 

carbon and metal prices is lower compared to that reported in previous studies. 

To address the limitations in the existing literature on the issue of volatility transmission mechanism from one market to the other, we employ a multi-

dimensional approach. Firstly, we explore possible cause and effect relationships among the markets contemporaneously using a non-parametric DAG 

method. Secondly, we quantify the degree of connectedness among the markets employing the Canonical Vine Copula (C-Vine Copula) to identify the 

structure and intensity of co-movements. Lastly, we construct a TVP-VAR-SV model of EUA, energy (Brent oil, UK natural gas, Rotterdam coal), 

metal (gold, silver, copper), and financial (EuroStoxx600) returns, combined with Impulse Response Function (IRF) analysis, to assess dynamic 

spillover effects from various perspectives, including time-varying, time lag, and periodicity. Based on our knowledge and on an extended review of 

previous research, the investigation of the causality directions and degree of connectedness, together with the measure of volatility transmissions, is 
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relevant to understand how different markets are intertwined and to identify specific risk sources. In order to differentiate the spillover effects and 

provide a more comprehensive results, we study various combinations of markets, in which the energy and metal market are distinguished including 

and excluding one component in each combination (e.g. Rodríguez, 2019). This segmentation leads to a more comprehensive analysis of the specific 

influences and relationships among markets. Finally, the sample used in this paper, namely daily data from 26 April 2005 to 31 December 2022, 

includes all trading periods of EU-ETS market, and allows us to obtain evidence of whether the volatility spillover transmission changes over time.  

[TABLE 1 ABOUT HERE] 
 

3. Methodology  

The study employs a comprehensive array of econometric and statistical tools, including GARCH models, unit-root tests, DAG, C-Vine Copula models, 

and TVP-VAR-SV models, to analyze time-series data. This multifaceted approach allows for an in-depth investigation of relationships, dependencies, 

and dynamic behavior exhibited by the variables which sre the object of this study. The details of each method are thoroughly outlined in Section A of 

the Online Appendix. 

In our analysis each price series is log-transformed. Volatility, a crucial aspect of our data, is assessed using the GARCH model introduced by Bollerslev 

(1986). In the following, unit-root tests, a vital step in assessing the stationarity of time-series data, are performed. The Augmented Dickey-Fuller 

(ADF) test, Philips-Perron (PP), Kwiatkowski–Phillips–Schmidt–Shin (KPSS), and Zivot-Andrews (ZA) tests, are executed to examine mean, variance, 

and autocorrelation structures over time. A comprehensive comparison of the performance of these tests is presented in Table A.1 of the Online 

Appendix. 

The DAG approach is employed to discover the direction of relationships among variables. While the Granger causality method has historically been 

used for this purpose, DAG, introduced by Pearl (2000), Spirtes et al. (2000), and Demiralp and Hoover (2003), offers an innovative approach to 

identify contemporaneous causal relationships.  

The degree of connectedness is measured using the C-Vine Copula model, which is acknowledged for its accuracy in quantifying multivariate 

dependencies among variables. In this respect, it is well known that the Spearman and Pearson correlation coefficient has several limitations, and recent 
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studies (see, among others, Tarantola et al., 2018; Chevallier et al., 2019; Pishbahar et al., 2019; Zhou et al., 2020; Ma 2021; Tan et al., 2022; Man et 

al., 2023; Ghazani et al., 2023) have demonstrated the superiority of copulas due to their flexibility in modeling correlations as well as structural 

dependencies. Specifically, C-Vine Copulas have a hierarchical structure and assume a single variable as a root node. Kendall’s tau is employed as a 

measure of dependence structure, that overcomes the inadequacy of linear correlation coefficients to capture non-linear dependences. The tail 

dependence coefficient, as described by Czado et al. (2022), further characterizes the degree of association.  

As far as volatility spillovers, we adopt theTVP-VAR-SV model, pioneered by Primiceri (2005) and Nakajima (2011), which acknowledges the 

limitations of the VAR approach in representing the dynamic relationships among variables and assumes that parameters follow a stochastic walk 

process. The estimation of the TVP-VAR-SV model involves Markov Chain Monte Carlo (MCMC) simulation. IRF are derived to analyze the reaction 

of dependent variables to explanatory variables. This model has been widely employed in economic and financial studies (e.g. Pakrooh and Pishbahar, 

2020; Yuan et al., 2021; Lang et al., 2023). 

4. Data 

Our dataset consists of the future prices of EU carbon allowances (EUR/ton of CO2), Brent Oil (USD/barrel), UK Natural Gas (USD/Mmbtu), Rotterdam 

Coal (USD/ton), Gold (USD/t.oz), Silver (USD/t.oz), Copper (USD/Lbs), and StoxxEurope600. Prices, which are expressed in USD, are converted 

into EUR using the EUR/USD exchange rate. The data are at daily frequencies and are collected from different reliable sources, namely the European 

Energy Exchange (EEX)1, Investing2 and the Trading Economics information financial database3, from April 25, 2005 to December 30, 2022, a total 

of 4531 observations (see Table 2). The time period spanned by our data allows us to investigate different economic conditions and regimes, and 

increases the comparability of our results with several studies published in the literature. However, since data on coal are available only from July 19, 

2006, our study analyzes the existence of spillovers between coal and other markets starting from Phase II of the EU-ETS system.  

[TABLE 2 ABOUT HERE] 

                                                             
1 https://www.eex.com/en/ 
2 https://www.investing.com/ 
3 https://tradingeconomics.com/ 
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5. Empirical Results and Discussions 

5.1. Preliminary analysis 

The log returns of carbon, Brent oil, natural gas, coal, gold, silver, copper, and stock prices show volatility clustering from all four phases (see Table 

B.1 of the Online Appendix). The one-step ahead volatilities are estimated with different GARCH specifications (see Tables B.2 and B.3 of the Online 

Appendix). The largest volatilities are associated with: coal, and silver prices in Phase I; oil, coal, and silver prices in Phases II and III; coal, copper, 

and stock prices in Phase IV.  

Table 3 shows the preliminary statistics of daily returns (Panel A) and volatilities (Panel B) of all series across different EU-ETS trading periods. The 

average levels of the returns and volatilities range within the intervals (-0.042, 0.089), and (0.14, 187.48), respectively. The unconditional volatilities 

vary from 0.034 to 2969.33, with the price of gold exhibiting the lowest variability and proving to be a stable investment opportunity. The price of 

carbon during Phase I exhibits positive returns with relatively high volatility, which tends to decrease during the next phases. The energy market is also 

moderately volatile, within the range (0.53, 4.175). Most of the returns are negatively skewed, suggesting a higher probability of large negative, rather 

than large positive, price dynamics and indicating that coal, oil, and stock markets carry larger risk. The large kurtosis values imply that most of the 

prices are leptokurtic, that is episodes of extreme volatility movements heavily load the tails of the price distributions. These results are confirmed by 

the Shapiro-Wilk statistics, which strongly reject the hypothesis of normal distribution for all variables.  

Finally, in order to tackle the issue of spurious regressions, we perform a bunch of stationary tests, with different assumptions on the deterministic 

components (i.e. intercept, trend, intercept and trend) and accounting for potential structural breaks in the four sub-periods (Phases I-IV) of the EU-

ETS market. All absolute returns (volatilities) of the series under investigation are stationary according to Augmented Dickey-Fuller (ADF), Philips-

Perron (PP), Kwiatkowski–Phillips–Schmidt–Shin (KPSS), and Zivot-Andrews (ZA) tests, with the hypothesis of a unit-root being rejected at the 5% 

significance level (see Table B.4 of the Online Appendix).  

[TABLE 3 ABOUT HERE] 
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5.2. DAG Analysis 

The main results of the DAG analysis suggest the presence of a contemporaneous relationship among carbon, energy, financial, and metal prices in all 

sub-periods (see Table 4). A closer look to Phase I demonstrates that stock, gold, silver, copper, oil, and gas prices cause on impact the price of carbon, 

indicating that energy, financial, and metal markets have contemporaneous relationships with EUA. In other words, changes or any movements in these 

markets tend to transmit almost immediately to the carbon market. The results are in line with Bataller and Keppler (2010), who point out that the 

prices of energy, gas and coal Granger-cause the carbon price during Phase I. This pattern persists in Phase II, implying that the relationships among 

these markets are not transient or episodic. Furthermore, the gas market is the contemporaneous cause of the stock market, that is the fluctuations in 

natural gas prices can directly affect the price of stock. Actually, the significant gas price drop recorded during the GFC may indicate weaker economic 

activity and, consequently, a negative effect on the earnings of companies through the stock channel. During periods of financial uncertainty, the coal 

and oil markets are the contemporaneous cause of metal markets. Changes in energy prices can lead to adjustments in investment strategies, which in 

turn influence the metal markets. Our findings are in line with Rodriguez (2019), who proves that the causal direction is from stock market to EUA 

spot prices during both Phase I and Phase II. Moving to Phase III, the contemporaneous relationships among these markets become more complex. 

According to our results, energy, financial, and metal markets are the contemporaneous cause of the carbon market, although new “bilateral” 

relationships emerge between energy-stock, metal-stock, and energy-metal markets. This suggests that the interconnection between carbon and other 

markets has become significantly entangled. Carbon, energy, financial, and metal markets are closely integrated for several possible reasons, including 

the impact of globalization through trade, financialization, market volatility, and advances in technology. The outcomes from Phase IV suggest that 

energy, metal, and financial markets continue to have a contemporaneous effect on the carbon market. Similarly to Phase III, the relationships between 

the pairs of markets metal-stock, energy-stock, energy-metal still persist; however, our analysis does not show the complex causal directions observed 

in Phase III. The results reveal that changes in energy, stock, metal markets impact directly the carbon market. This evidence is coherent with the 

conclusion by Abedin et al. (2023) about the Granger causality from oil and gas prices to the EU stock market, although it supports the absence of 

causality from stock to carbon prices.  

 [TABLE 4 ABOUT HERE] 
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5.3. C-Vine Copula Models 

Table 5 presents the results based on the parametric C-Vine Copula models, which show that the dependence structure between carbon, energy, 

financial, and metal markets varies across the sub-periods. In Phase I, the dependence between the carbon market and other markets is dominated by 

the oil market, which exhibits the stronger negative dependence (Kendall’s tau equal to -0.27). Given this asymmetric tail dependence, extreme market 

fluctuations in the oil market are transmitted to the carbon market. An increase in oil price might have a different impact on the CO2 price compared 

to a decrease in the oil price of the same magnitude. On the other hand, the silver market is the second largest spillover transmitter to the carbon market, 

with a Kendall’s tau of 0.20, suggesting that both markets tend to move in the same direction. The reasons for this positive correlation include the fact 

that silver is used in various industries, such as in the production of solar panels, while EUA are tied to industrial emissions. Additionally, volatility in 

the silver price can reflect changes in energy costs. Conversely, the dependence between the carbon market and other markets is relatively weak and 

symmetric, that is high (low) prices are associated with high (low) levels of CO2 emissions. Moving to Phase II, it is clear that the financial market 

shows a stronger dependence with the carbon market. In particular, the stock market (Kendall’s tau equal to -0.17) shows the most negative significant 

connection with the carbon market. Additionally, the coal and silver markets (Kendall’s tau equal to 0.14) demonstrate positive and moderate 

dependence with the carbon market, while the oil, gas, gold, and copper markets show a weak correlation. This is line with Reboredo (2013), who finds 

a positive average dependence between the oil and carbon prices during Phase II and points out that the carbon market can be the net receiver of shocks 

from both the stock market and the energy. An increase in stock, silver, and coal prices might have different impacts on CO2 prices, compared to a 

decrease in the prices of the same magnitude.  The results of Phase III are almost similar to the findings in Phases I. The structure of the relationships 

between carbon and the other related markets is mostly dominated by the link between stock, silver, and oil markets. The connection degree between 

the carbon market and the silver market is positive (Kendall’s tau around 0.19), which implies a moderate asymmetric tail dependence. Likewise, the 

dependence between carbon and stock markets is positive (Kendall’s tau around 0.23). In contrast, a negative asymmetric dependency is observed 

between the carbon market and the oil market (Kendall’s tau around -0.10). These outcomes suggest that shocks originating in oil, coal, stock and silver 

markets can potentially affect the price of carbon. Our findings are also consistent with the conclusions drawn by Chevallier et al. (2019) about the 

weak and negative co-movement between oil, gas, and carbon prices in Phase III. During Phase IV, stock and metal markets, particularly the copper 
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market, demonstrate the closest relationship with the carbon market with a Kendall’s tau of 0.27. The carbon market has a positive and strong connection 

with the copper market, and any fluctuations in the copper prices strongly impact the EUA future prices. A rise in copper prices could have an impact 

on CO2 prices that is distinct from the effect that a decrease of the same size in copper prices would have on CO2 prices. The coal and stock markets 

display a moderate correlation with the carbon market (Kendall’s tau values of 0.10 and 0.16, respectively). Based on the asymmetric tail dependencies, 

the carbon market can be the net receiver of shocks from both the coal and stock markets.  

As a consequence, EUA future prices display a strong dependency on energy, stock, and metal markets, particularly oil, stock, and copper, and are the 

most effective channels of transmission of fluctuations to the carbon market. The intensity of this pass-through varies across sub-periods. The strongest 

connection is observed between oil and carbon prices in Phase I, followed by stock prices in both Phase II and Phase III, and finally by copper prices 

in Phase IV. Overall, the degree of dependence between the carbon and oil markets decrease over time, whereas the relationship with gas remain weak, 

with coal showing a consistently high degree of dependence. Conversely, the gold market presents a weak relationship with the carbon market, whereas 

the relationships with silver and copper are stronger. The degree of dependence between carbon and stock markets remains consistently strong 

throughout the sub-periods.  

[TABLE 5 ABOUT HERE] 

 

5.4 TVP-VAR-SV Estimation  

We apply Bayesian techniques based on the MCMC method to estimate the TVP-VAR-SV models for the market combinations that are most strongly 

correlated with carbon prices. Specifically, we use the MCMC algorithm to simulate 20000, 2000 of which are burnt out. The final estimation results, 

including posterior mean, standard deviations, 95% confidence interval, Geweke Converge Diagnostic (CD) absolute value, and invalid influencing 

factors of the estimated parameters are available in Table 6. Accordingly, the CD statistics stand within the confidence intervals and the null hypothesis 

of “parameters converging to the posterior distribution” cannot be rejected at conventional significance levels, indicating that the parameters have 

converged to their posterior distributions. Furthermore, the invalid influencing factors of the parameters are quite small. Actually, the maximum value 
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observed is 286.16, implying that at least 70 unrelated samples can be observed from 20000 simulations. We can also infer that the sample path appears 

stable and the autocorrelations consistently decrease, suggesting that the MCMC algorithm accurately reproduces samples and parameter distributions. 

Based on the TVP-VAR-SV models, we provide the time-interval and time-point impulse functions to analyze the time-varying spillover effects 

between the carbon market and the most correlated markets at different lag periods and specific points in time. Regarding the time-intervals, we select 

1, 2, 3 and 4 days, while, as for time-points selection, potential outliers are considered and detected. The time-varying stochastic volatilities of carbon 

market and different driving forces are presented in Table 6 across the four different phases of the EU market.  

5.4.1. Phase I 

The time-interval responses of carbon to shocks on Brent oil vary significantly from positive to negative, and as the number of lags increases, the 

intensity of the carbon response tends to increase. Accordingly, an increase in Brent oil prices has two distinct impacts on economic growth: 1) it limits 

economic growth by reducing energy demand and, consequently, carbon emissions, or 2) it stimulates economic growth due to the substitution effect 

of oil, which leads economies to use alternative lower-priced energy sources, such as coal. By comparing the shock effects over time, we find that in 

case of a four-day lag, oil has the most significant positive shock effect, especially in the second half of 2005 and 2006. However, this effect becomes 

limited and turns negative when considering the other lags (see green spot line). The possible reasons behind this phenomenon can be reconducted to 

the introduction of the Kyoto protocol, supply disruptions caused by Hurricane Katrina, and the increasing in global energy demand, driven by China 

and India. In the case of time-point impulse functions of carbon to Brent oil prices, it is evident that the impacts of the shock vary for up to 15 days, 

reaching their maximum intensity (-0.065) on the 13th day. These results are aligned with Dhamija et al. (2017)’s findings on the volatility co-movement 

between markets of EUA and Brent oil, with Cretì et al. (2012), who show that the oil market is a determinant of carbon prices in Phase I, and with 

Hammoudeh et al. (2014)’s conclusions on the persistent impact of energy price shocks on carbon market during Phase I.  

The impacts of stock shocks on EU carbon prices oscillate between positive and negative and exhibit large volatility in the latter part of 2006. The 

stock market shows its largest shock effect on the carbon market in the four-day lag case (response intensity around 7.0). The early stages of the GFC 

cause significant financial turbulence, enhancing market uncertainty and volatility due to changes in industrial activity. These effects directly impact 

carbon prices, in the light of the close link between industrial output and emissions.  
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Additionally, the impacts of shocks in the silver market on EU carbon prices alternate between positive and negative. However, by increasing the 

number of time lags, the strength of responses gradually increases, and, in case of four-day lag, the silver market shows its greatest shock effect on the 

carbon market. By the latter part of 2006, we observed a relevant response intensity (7.5) to silver shocks, suggesting that the GFC exerts a significant 

impact on silver demand, consequently causing fluctuations in the EUA. Despite the financial crisis, the industrial demand for silver, particularly in the 

solar industries, remain relatively stable. Stability in industrial demand, coupled with the increased investment demand due to the crisis, causes 

significant fluctuations in silver prices, which, in turn, affect the EU carbon market. This finding aligns with the conclusions of Liu et al. (2022) 

regarding the time-varying connectedness between metals, particularly silver, and the carbon market.  

5.4.2. Phase II 

The response of carbon prices to stock price shocks alternate between positive and negative. The strength and direction of shock effect changes 

frequently, reaching its maximum in 2009. The short-term impact of stocks on carbon price is greater than the long-term impact. In the case of one-day 

lag, the stock market has the most significant shock effect, ranging between -0.2 and +0.22. Considering the second half of 2009 and the early part of 

2010, the magnitude of the shock impact is significant. This is due to the strong market interconnectedness during the EU Debit Crisis (EDC), as the 

world economy gradually begins to recover after the GFC. During this period, despite the positive pressure on fossil energy prices, firms’ output 

improves (in particular the performance of leading companies reflects to the stock prices and increases investors’ returns), thus the demand for EU 

allowances increases. These findings are in line with Lin et al. (2021), Yuan et al. (2021), Lovcha et al. (2019), and Venmes (2015), according to whom 

EuroStoxx600 is a major source of carbon price variations. Additionally, it is noticeable that the time-point responses of carbon to stock shocks last 

approximately 2-3 days. The responses are positive, reaching a trough at lag 2, and then begin to diminish. 

The time-interval responses of carbon prices to silver market shocks vary significantly between positive and negative. As the number of lags increases, 

the intensity of the carbon response does not follow a clear trend. By comparing the shock effects over time, we find that, with a one-day lag, silver 

has the most significant positive shock effect, especially before mid-2010. However, this effect becomes limited and turns negative with longer-term 

lags. After mid-2010, the responses vary between negative and positive, based on their short and long-term impacts. These phenomena can be attributed 

to the GFC, which leads to decreased economic and industrial activity, particularly in silver mining and demand. Additionally, bearing in mind that 
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silver is a key material in the production of solar panels, an increased demand for silver, driven by investments in renewable energy, can lead to higher 

carbon prices as the market anticipates larger demand for carbon credits to offset emissions from traditional energy sources. Our conclusions are 

supported by the findings of Liu et al. (2022), Jiang and Chen. (2002), and Adekoya et al. (2021) on the volatility spillover from silver to the CO2 

prices. 

Regarding the effects of shocks in the coal market on the carbon market, the strength and direction of these shocks are not constant over time. When 

the coal price unexpectedly rises, carbon prices typically respond positively, except in late 2009 and early 2010, suggesting that an increase in coal 

prices leads to greater demand for EUA and, consequently, for coal. The coal market has the greatest impact on carbon prices with a one-day lag before 

2010. As the number of lags increases, the strength of the carbon market’s response gradually weakens. After early 2010, the coal market shows the 

largest impact with a three-day lag. In 2011, responses peak, ranging between 0.02 and 0.15, and then experience a dramatic drop until the end of the 

period. These trends can be explained by the impact of the GFC, which increased demand for coal as an alternative fuel. Additionally, many Eastern 

and Central European countries heavily depend on coal, and it was the primary fuel for power generation in the EU during that period. From 2010 to 

mid-2011, two bell-shaped curves with peaks are observed, possibly due to firms’ efforts to stimulate economic activity after the GFC, along with the 

EDC phenomenon. Our results are consistent with the findings reported by Lin et al. (2021) and Hammoudeh et al. (2014) regarding the impacts of 

coal prices shocks on the EU carbon market.  

5.4.3. Phase III 

The impacts of stock shocks on EU carbon prices are dominated by positive responses and exhibit large volatility. This suggests that it is not possible 

to identify a clear pattern between 2013 and 2020. According to our results, an increase in stock prices has two distinct impacts on the carbon market, 

that is, it can either limit or stimulate the emissions indirectly. Additionally, as the number of lags increases, the degree of the carbon market’s response 

tends to decrease, although these effects persist over time. In the case of one-day lag, the stock market shocks have the greatest effects on the carbon 

market. In the early years of Phase III, especially between 2013 and 2015, the magnitude of responses is smaller than in the later period. This indicates 

that the carbon market becomes more sensitive to changes in stock prices, and the information transmission between the markets is more intense. 

Several factors can explain the volatile response of carbon to stock shocks, including the back-loading structural change in ETS, economic recovery 
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after the EDS crisis, European Central Bank policies to combat inflation, the Brexit referendum in 2016, disruptions in global energy oversupply, and 

the 2015 Paris agreement on climate change. Regarding the time-point impulse functions of carbon to stock prices, the impacts of the shocks last 

between 1 and 5 days, reaching their maximum intensity (0.004) on the first day and then gradually diminishing. These outcomes are close to the 

conclusions of Lovcha et al. (2019), Salvador et al. (2021), Kim et al. (2021).  

The response of the carbon market to oil market shocks indicates two types of impacts, one positive, the other occasionally negative. As the number of 

lags increases, the magnitude of the carbon market response decreases. Due to an oversupply disruption between the end-2014 and mid-2015, the price 

of Brent oil declines from $ 100 to $ 30. This leads to an improvement of the performance of leading companies via an increase in energy intensity, 

which raises the demand for EUA. In the last period of Phase III, due to various factors, including green energy transition policies of the EU, OPEC 

production cuts, geopolitical tensions between the USA and the Middle East, Brexit, and the impact of COVID-19, we document a volatile response of 

the carbon price to changes in oil prices, with response magnitudes ranging between -0.02 and -0.41. Lin et al. (2021), Yoon and Lee (2019), Adekoya 

et al. (2021), and Dhamija et al. (2017) study the volatility spillovers between Brent oil and EU carbon prices and come to conclusions very close to 

our findings. 

The response of carbon prices to silver price shocks alternate between positive and negative, although strength and direction of the shock effect change 

frequently. Accordingly, a bell-shaped pattern of this response, with its maximum magnitude in 2016, is observed, followed by an uncertain and volatile 

trend. An increase in silver price can either stimulate or dampen carbon prices over time, which aligns with the findings by Jiang and Chen (2022). The 

intensity of carbon market’s response to changes in silver prices ranges between -0.011 to +0.021. In the case of one-day lag, the silver market shocks 

have the largest effects on the carbon market. As the number of lags increases, the size of carbon’s response tends to decrease before mid-2015, while 

the opposite occurs after, a pattern documented also by Liu et al. (2022). This suggests that the carbon market becomes more sensitive after the Paris 

Agreement in 2015. Additionally, several factors can explain the change in the carbon price response to silver prices, including the EU’s energy and 

environment concerns, as well as shifts in power generation towards cleaner fuels, which result in an increase in silver mining. 

5.4.4. Phase IV 
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The response of the carbon market to stock market shocks indicates two types of impacts, one positive, the other negative, reaching its maximum in 

the first quarter of 2021. The long-term impact of stocks on carbon prices is greater than the short-term impact. In the case of four-day lag, the stock 

market shocks have the most significant effects, ranging between -0.001 and 0.0042. During early 2021, due to the post COVID-19 pandemic and 

lockdowns, the magnitude of the shock impact is significant. As the world economy gradually begins to recover after widespread vaccination in the 

EU, the responses diminish considerably. This implies that the stock market shocks, occurring during the COVID-19 pandemic and invasion of Russia 

into Ukraine, do not persist over time and they are noticeably smaller compared to the effects of the GFC (Pappas et al. 2023). This picture is supported 

by the time-point response functions of the stock market to the carbon market, which last approximately 1-5 days. The responses are negative, reaching 

a peak at lag 2, and then start to decline. 

In examining the response function of the carbon market to coal, it emerges that the response is dominated by positive responses and exhibits large 

volatility in 2021. As the number of lags increases, the magnitude of the carbon market responses decreases. During the COVID-19 pandemic 

lockdowns, the magnitude of the shock impacts is large, around 0.16. This value can be attributed to reduced economic activity, which leads to 

fluctuations in coal demand and disrupts supply, consequently affecting the demand for EUA. By comparing the size of these responses, the coal market 

is the highest contributor to shocks to the carbon market, while the stock market has the least impact (Wu et al. 2022; Zoynul Abedin et al. 2023). With 

widespread vaccination and the gradual recovery of the EU economy, these responses diminish slightly. With the beginning of the Russian invasion 

into Ukraine, the coal rises, due to supply shortages, leading to a decline in demand for both coal and the EUA.  

The response of the carbon price to copper market shocks is initially negative, followed by a positive phase. With a one-day lag, copper market shocks 

exhibit a distinct pattern compared to those associated with mid and long-term lags. Our findings indicate that, before the last quarter of 2021, the long-

term positive response of carbon prices to copper market shocks follow a bell curve, peaking during the COVID-19 pandemic lockdowns, a pattern 

documented also by Jiang and Chen (2022). The magnitude of these shock impacts is around 0.016, and it can be attributed to reduced economic activity 

leading to fluctuations in copper demand and supply disruptions, consequently affecting the demand for EUA. Additionally, as the number of lags 

increases, the magnitude of the carbon market's response decreases. This evidence is close to the findings of Wu et al. (2022) and Liu et al. (2022).   

[TABLE 6 ABOUT HERE] 
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6. Robustness Check 

In the context of DAG analysis, we employ alternative algorithms (namely, Fast Casual Inference, FCI and Fast Greedy Equivalence Search, FGES) 

to assess the robustness of the results obtained from the Peter-Clark (PC) max algorithm. The PC max algorithm produces accurate results, as it 

efficiently handles large datasets, such as the one used in our paper and reduces the risk of false causal inferences. Conversely, both FCI and FGSE 

methods encounter scalability issues when dealing with large datasets, they require additional assumptions about the distribution of latent variables, 

and are dependent on turning parameters. Regarding the copula methodology, we apply both R-Vine and D-Vine copulas to ensure that the chosen 

copula, C-Vine, satisfies the assumptions obtained from the DAG analysis. According to our findings, the complex structures and a large number of 

estimated parameters in both R- and D-Vine copulas are more challenging. In contrast, the C-Vine copula allows us to select a center variable as a 

dependent variable when modelling dependencies. This type of vine copula simplifies our estimations and enhances the interpretability of our results. 

In the context of TVP-VAR-SV models, we increase the lag order and the number of simulations, ranging from 10000 to 30000. Accordingly, we find 

that lag 1 and 20000 sample simulation provide credible results, that is both statistically significant and consistent with previous findings.   

7.Conclusions and Policy Implications 

The EU-ETS market, settled to reduce carbon emissions, is influenced by environmental, energy, and economic factors. In the context of EU carbon 

market, the relationship between carbon, fossil energy, metal, and financial markets has been investigated by many scholars, who have mainly studied 

the volatility spillover effects between subgroups (typically pairs) of markets. However, according to our knowledge, no study has paid attention to the 

multiple contemporaneous relationships, size of connectedness, strength and direction of time-varying spillovers, as well as periodicity and time-lags, 

among carbon, energy, metal and financial markets. Unlike most previous studies, this paper combines TVP-VAR-SV models along with DAG and C-

Vine Copula analysis methods to comprehensively analyze the dynamic spillover effects, and net spillover effects in carbon, Brent Oil, UK Natural 
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Gas, Rotterdam Coal, Gold, Silver, Copper, and EuroStoxx600 future prices over the period from April 25, 2005 to December 30, 2022. The findings 

of our study shed new insight on the EU-ETS policy design and can be summarized as follow:  

1) Long-term, stable, and multiple relationships among carbon, energy, metal, and financial markets do emerge. However, some short-term 

relationships are observed during different phases of the EU-ETS market. During Phase I, the trial period of EU-ETS, the carbon market is as 

a net receiver of shocks from oil, gas, coal, gold, silver, copper, and stock markets. Moving to Phase II, all the previous relationships persist, 

and a short-term relationship is observed between energy-stock and energy-metal markets. During the GFC, volatility in energy prices impacts 

metal mining, output and, consequently, the financial performance of firms (Pappas et al., 2023). In Phase III, in addition to the previously 

established relationships, short-term multiple relationships emerge between the pairs of markets energy-stock, metal-stock, and energy-metal, 

in accordance with Rodríguez (2019). This finding can be attributed to the high volatility in Brent oil prices, which increases the general price 

level and economic risk. This situation urges investors to seek a safe-haven against economic risks and high inflation (Cheng et al. 2022). 

Similar to Phase III, during the final phase of the EU-ETS market, all relationships remain consistent, except for the short-term link between 

metal-stock markets. In conclusion, our results suggest complex but consistent contemporaneous relationships among carbon, energy, financial, 

and metal markets across sub-periods. Understanding these intricate relationships across different phases of the EU-ETS market is crucial for 

carbon market participants, investors, and policymakers.   

2) In this paper the degrees of connectedness among carbon, energy, metal and financial markets are unveiled and quantified. Our analysis based 

on C-Vine Copula models reveals that Brent oil prices are one of the significant driving factors of volatility transmissions within the carbon 

market during Phase I. The GFC triggers an increase in oil prices, which consequently leads to decreased output and increased demand for 

EUA. Additionally, we observe large co-movements between silver prices and carbon prices during this phase. In Phase II, the carbon market 

is more sensitive to stock prices, as well as to silver and coal prices, showing a response to changes in these three variables which is negative 

and positive, respectively. This result can be attributed to the GFC and the EDC, during which many firms either turn to use coal as an alternative 

fuel or scale down their activities. These findings are consistent with Ren et al. (2021), but contrast with the conclusions by Venmans (2015) 

on the positive correlation between stock and carbon market during the period 2008-2010. These apparently diverging views can be motivated 
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by differences in the data periods and methodologies. Moving on to Phase III, EUA prices are found to be positively correlated with stock and 

silver prices while their link to oil is negative, similar to Kim et al. (2021) and Chevallier et al. (2019). The negative correlation between energy 

and carbon markets can be attributed to the introduction of back-loading structural change in ETS, EU implementation of Green Energy policies, 

followed by the 2015 Paris Agreement, Brexit, COVID-19, and disruption in energy supply. In the final phase of our analysis, we find a positive 

correlation between carbon prices and both stock and copper prices. This change in the direction of the co-movements between coal and carbon 

markets is influenced by global economic recovery after COVID-19 and Russian-Ukraine conflict. 

3) Significant volatility spillover effects are observed among the markets of carbon, oil, coal, silver, copper and stocks, while UK natural gas and 

gold markets show the lowest explanatory power for carbon prices. The time-varying spillover effects fluctuate fiercely between sub-periods, 

as noted in Wei et al. (2023). The carbon market is mostly a net receiver of volatility during the GFC and the Russian-Ukraine war, as suggested 

by Aslan and Posch (2022). Results document reasonable spillover effects between the carbon market and silver, stock, oil, and coal markets. 

The coal market presents a long-run higher spillover effect, reaching its maximum during Phase IV, in line, among others, with Wu et al. (2022), 

Yuan et al. (2021), Lin et al. (2021), Zhan and Sun (2016). Findings for Phase I of the EU-ETS point to the existence of volatility spillovers 

from the silver, stock, and oil market to carbon prices due to several unprecedent events, including supply disruption and increase in global 

energy demand. This aligns with the results of Chevallier et al. (2008). During Phase II, due to the GFC and the EDC, both the stock market 

and the coal market exhibit a high degree of volatility spillovers, consistent with Lovcha et al. (2019). Moving to Phase III, weak volatility 

spillover effects are observed among energy, metal, stock and carbon markets. Finally, EUA future prices react not only to coal prices but also 

to the copper and stock markets, because of the energy crisis and COVID-19. Regarding the duration of the time-varying spillover effects, we 

observe that the energy market, demonstrates a persisting shock effect during trading periods of the EU-ETS, lasting between 5 and 15 days, in 

line with Lin et al. (2021) and Hammoudeh et al. (2014).   

Our findings have economic implications for investors, firms, and policy makers interested in predicting the evolution of carbon future prices. Our 

measures of causality direction, connectedness degree, and time-varying spillover transmissions among the markets can support policy makers in 

proposing more accurate policies to achieve the 2050 Net Zero Carbon goals. When policy makers design carbon market policies, they should 



24 

 

consider the larger volatility spillover effects and risk transmissions from fossil energy, metal, and stock markets. Additionally, policy makers need 

to pay attention to the magnitude, the frequency, and the direction of shock transmissions to the carbon trading prices, due to its reactivity with 

fossil energy, metal, and financial markets. Investors, who have assets and derivatives in the EU carbon market in their own portfolios, should 

precisely monitor volatilities spillover mechanisms in the fossil energy markets, which are unstable, different at different timescales and conditions, 

in order to develop a more effective hedging strategy and reduce risk. Moreover, investors should be aware of the energy, metal, and financial 

markets relationships under different unprecedented events, such as GFC and COVID-19, if they wish to timely adjust their investment in the EU 

carbon market. Furthermore, it seems necessary to stay “tuned” about both short- and long-term trends in energy markets, which may impact the 

carbon prices. Firms, particularly high energy-intensive industrial companies, should optimize their carbon emissions reduction strategies by 

adapting their fossil energy consumption patterns in response to any change between fossil fuels markets and EUA. In the past, firms have forecasted 

carbon prices based on fossil fuel prices, including Brent oil, UK natural gas, and Rotterdam coal, to choose the best energy bundle. However, the 

EU-ETS affects predictions and marginal costs of fuel conservation. Therefore, firms should not postpone investments on clean-energy technologies 

facilitating the transition to lower-carbon production modes. For this aim, policies should integrate the dynamics of silver and copper markets to 

better predict carbon price fluctuations. Given their role in renewable energy, understanding the trends of these markets can help in designing more 

resilient carbon pricing mechanisms. Policymakers should promote investments in renewable energy technologies that rely on silver and copper. 

This support can stabilize demand for these metals and reduce volatility in carbon prices, facilitating the transition to a low-carbon economy. 
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Figure 1. Daily EUA futures prices (€)  
(Source: European Environment Agency, EEA 2023) 

 

Table 1. Summary of the literature on linkage between/among energy-metal-financial-carbon markets 
Author(s) Methodology Main Markets Period Major Findings 

Wei et al, 
2023 

TVP-VAR-DY  

EUA, MEI index, Brent 

Oil, Renewable Energy 
Stock  

Monthly data 

from May 2005 
to September 

2021 

The time-varying total connectedness 

varies significantly over time, with a 
focus on short-term. 

Zoynul Abedin 

et al, 2023 

Granger 

causality test, 

DCC, DY and 

BK  

EUA, Oil, Coal, Gas, 

European, Shanghai Stock 

Exchange 

Daily data from 

16 December 

2010 to 29 

December 2022 

Natural gas contributes the most to 

shocks, while the European stock 

exchange contributes the least. 

Wu et al., 

2022 

GARCHSK 

and QVAR 

EUA, Oil, Coal, Gas, 

Copper, Aluminum, Lead, 

Zinc, Nickel, Tin 

Daily data from 

July 1, 2015 to 

February 28, 

2022 

Significant risk spillover exists among 

carbon, energy, and nonferrous metal 

markets, particularly with the coal 

market as the core of this system. 

Liu et al, 2022 QVAR 

EUA, Heating Oil, Gas, 

Brent Oil, Gold, Silver, 

Copper, Lead, Zinc, 

Aluminum, Nickel 

Daily data from 

April 1, 2008 to 

October 29, 

2021 

The time-varying connectedness 

between energy, metal, and carbon 

markets varies over time. 

Jiang and 

Chen., 2022 
DY and BK  

EUA, Gold, Silver, Copper, 
Aluminum, WTI Oil, Gas, 

Coal 

From January 
1st, 2014 to 

March 1st, 2022 

Copper and silver, particularly copper, 
show strong explanatory power for 

carbon price fluctuations notably after 

the post-COVID-19 outbreak. 

Aslan and 

Posch, 2022 
DY  EUA, FTSEE300  

From 1st of 

January 2013 to 

1st of Jun 2022 

During the recent European energy 

crisis, the EUA receives volatility from 

various sectors. 

Salvador et al., 

2021 

VAR-DCC-

GARCH 

EUA, UK Gas, Brent Oil, 

Rotterdam Coal, SP Clean, 

Eurostoxx600 

Monthly data 

from January 

2010 to 

February 2021 

The correlation between EUA and other 

return series is generally positive but 

weak. 

Yuan et al., 

2021 
TVP-VAR  

EUA, Brent Oil, Gas, 

Phlelix Electricity, 

STOXX600  

 

Quarterly data 

from 2008 to 

2018 

The carbon price shows higher 

sensitivity to energy prices, along with 

stock prices in the short-term, while its 

response to stock price changes in the 

mid-to-long term. 

Ren et al., 

2021 
QQ 

EUA, Brent Oil, Rot. Coal, 

UK Gas 

From 7 Jan 2013 
to 30 March 

2019 

The energy prices reveal an asymmetric 
and negative impacts on carbon price, in 

which oil and coal prices indicate 
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increasing effects across carbon 

quantiles. 

Kim et al., 

2021 

VAR and 

Wavelet  

 

EUA, Coal, Brent Oil, 

Electricity, ERIX, 

STOXX50 

From January 1 

2013 to 

December 31 

2019 

Coal and carbon prices share a negative 

correlation, while carbon and renewable 

energy stock prices have a positive 

correlation. 

Adekoya et al., 

2021 

GFEVD, 

Causality test, 

 

EUA, Crude Oil, Gas, 

Copper, Silver, Gold, S&P 

500, US $ 

Weekly Data 

from October 

2009 to October 

2020 

Except for copper and the U.S. currency 

markets, carbon prices are a net receiver 

of shocks from various other markets. 

Lin et al., 2021 TVP-VAR-SV EUA, Oil, Gas, Coal 

From 1st January 

2009 to 31st 

December 2018 

The carbon market is significantly 
connected with fossil energy markets, 

particularly coal. Time-varying 

spillover effects last three weeks and 

weaken over time. 

Xiao et al., 

2021 
BK  EUA, Brent Oil, Coal, Gas  

From January 3 

2013 to 

November 1 

2019 

There is a bidirectional spillover effects 

between carbon and energy markets in 

short-term, while the long-term effect is 

weak. 

Zhao and 

Wang 2020 
SEM 

EUA, Brent Oil, Gas, 

CAC40, DAX, SP Clean, 

SP500 

From February 

2015 to January 

2020 

CAC40, oil, gas have a direct effect on 

EUA prices, while SP500 and SP clean 

imply an indirect effect on carbon 

markets. 

Yoon and 

Lee., 2020 

VAR and 

BEKK-

GARCH  

EUA, Brent Oil, Biofuels 

From 23 

October 2009 to 

5 July 2020 

Volatility spillover exists within the 

three markets, in which Brent oil 

showing a strong spillover impact 

Rodríguez, 

2019 

Toda and 
Yamamoto 

Cointegration 

and Granger 

Causality 

Tests 

EUA, CAC40, DAX, 

FTSE100, FTSE-MIB, 

IBEX 

Daily data from 

April 1st, 2005 

to December 15, 

2015 

The causality effect runs from the stock 

indices to the carbon market. 

Lovcha et al., 

2019 
SVAR  

EUA, Oil, Gas, Coal, 

Electricity, STOXX 

Weekly data 

from 2008 to 

2018 

STOXX was a main driver of CO2 price 

fluctuations in the past, but its influence 

has diminished recently, while coal 

prices have experienced a contrasting 

trend. 

Chen et al., 
2019 

Asymmetric 
BEKK  

EUA, Brent Oil, Gas, Coal  

From April 22, 

2005 to July 17, 
2018 

A stable, positive correlation exists 

among EUA, Brent oil, and gas prices, 

while the EUA's correlation with natural 
gas and coal weakened and became 

more volatile after Phase II (particularly 

after GFC) and III. 

Chevallier et 

al., 2019 

ARCH, Vine 

Copula  

EUA, Brent Oil, Gas, Coal, 

Switch Energy 

From 1 January 

2010 to 19 May 

2016 

Carbon prices have a weak correlation 

with energy prices, showing a negative 

association with oil and gas. 

Dhamija et al., 

2017 

BEKK-

MGARCH  
EUA, Brent Oil, Coal, Gas 

Daily data from 

2005 to 2015 

Significant volatility co-movement 

exists between the EUA and energy 

markets. 

Zhang and 

Sun, 2016 

VAR-DCC-

GARCH and 

BEKK-

GARCH 

EUA, Coal, Natural Gas, 

Oil 

From 2nd 

January 2008 to 

30th September 

2014 

An unidirectional volatility spillover 

emerges from coal to the carbon, while 

no significant spillover is observed 

between the carbon and oil. 

Venmans, 

2015 

MGARCH 

(BEKK-CCC-
Diagonal)  

EUA, Brent Oil, Gas, Coal, 

Electricity, 
StoxxEurope600 

Daily data from 

2008 to 2010 

The carbon market is positively 

correlated to stock market. 

Reboredo, 

2014 
MCARR EUA, Brent Oil 

Daily data from 

2010 to 2014 

There is volatility dynamics, leverage 

effects, and the absence of significant 

volatility spillovers between the 

markets. 



Hammoudeh 

et al., 2014 
BSVAR 

EUA, Oil, Gas, Coal, 

Electricity 

Both daily and 

monthly data 

from August 

2006 to 

November 2013 

There is a consistent impact between 

energy to carbon market. 

Reboredo, 

2013 

Copula and 

ARMA-

TGARCH  

EUA, Brent Oil 

From 3rd 

January 2008 to 

7 September 

2011 

There is a positive and average 

symmetric independence between the 

markets, revealing no contagion effects. 

Bataller and 

Keppler., 2010 

Granger 

Causality test 

CO2, Electricity, Coal, Gas, 

Eurostoxx600, Temperature 

From January 
2005 to 

December 2007 

Coal and gas prices influence carbon 
market, subsequently causing Granger 

effects on electricity, while in the initial 

year, the direction reverses. 

Chavallier et 

al., 2008 
GARCH  

EUA, Oil, Gas, Coal, 

Electricity, Weather Index 

From 1st July 

2005 to 30 April 

2007 

EUA respond to both energy prices' 

forecast errors and unexpected 

temperature fluctuations during colder 

events. 

 

 

Table 2: EU-ETS phases and number of the observations 

Trading Periods Start End Number of OBS. 

Phase I 2005/04/25 2007/12/31 680 

Phase II 2008/01/02 2012/12/31 1285 

Phase III 2013/01/02 2020/12/31 2051 

Phase IV 2021/01/04 2022/12/30 515 

 

Table 3: Descriptive statistics of daily returns and volatility across the period 

Panel A Returns OBS Mean Std. dev. Min Max Skewness Kurtosis 
Shapiro 

Wilk 

I 

Carbon 680 0.015 13.67 -60.20 335.12 21.53 532.17 14.51a 

Oil 680 0.043 0.867 -2.42 2.91 -0.006 3.23 2.05a 

Gas 680 0.010 1.62 -6.47 10.86 0.68 7.42 7.25a 

Coal 380 0.010 0.58 -1.88 6.01 3.94 37.77 10.12a 

Gold 680 0.049 0.63 -3.42 2.48 -0.48 5.032 5.46a 

Silver 680 0.053 0.99 -6.09 3.85 -1.12 9.49 6.09a 

Copper 680 0.053 0.94 -3.61 4.83 -0.20 5.20 13.70a 

Stock 680 0.021 0.29 -1.15 1.23 -0.52 4.67 6.11a 

II 

Carbon 1285 -0.042 1.18 -5.57 8.76 0.033 7.043 8.57a 

Oil 1285 0.0007 1.16 -7.42 7.55 0.10 8.11 9.42a 

Gas 1285 -0.032 1.48 -4.37 11.51 0.92 7.82 9.02a 

Coal 1285 -0.015 0.91 -10.22 7.02 -1.73 26.33 12.91a 

Gold 1285 0.018 0.75 -2.79 4.29 0.03 5.56 7.84a 

Silver 1285 0.019 1.25 -8.36 5.92 -0.577 6.884 8.84a 

Copper 1285 0.002 1.11 -5.58 5.89 -0.093 5.291 7.32a 

Stock 1285 -0.008 3.44 -80.29 80.91 0.23 475.8 16.42a 

III 

Carbon 2051 0.034 1.46 -18.88 10.44 -1.09 20.70 12.15a 

Oil 2051 -0.017 1.38 -28.01 17.86 -3.21 109.90 15.24a 

Gas 2051 -0.007 1.31 -7.77 8.72 0.25 6.91 9.91a 

Coal 2051 -0.007 0.65 -7.87 7.44 0.39 38.93 14.61a 

Gold 2051 0.001 0.52 -4.51 2.62 -0.34 7.84 9.748a 

Silver 2051 -0.004 0.82 -5.66 3.39 -0.55 8.70 11.30 a 

Copper 2051 -0.002 0.58 -2.86 3.01 -0.09 4.69 7.68 a 

Stock 2051 0.007 0.38 -3.91 2.32 -1.42 17.25 12.47a 

IV Carbon 515 0.075 1.31 -7.69 7.03 -0.69 8.05 7.36a 



Oil 515 0.031 1.14 -5.59 3.86 -0.71 5.78 6.37a 

Gas 515 0.036 1.94 -8.27 6.50 -0.36 4.37 4.40a 

Coal 515 0.089 2.05 -23.75 13.80 -2.32 46.93 11.65a 

Gold 515 -0.014 0.51 0.51 2.12 -0.20 5.24 5.46a 

Silver 515 -0.019 0.91 -4.96 3.91 -0.19 7.19 6.79 a 

Copper 515 -0.004 0.77 -2.46 4.07 0.16 4.50 3.37 a 

Stock 515 0.005 0.37 0.37 1.30 -0.52 5.14 6.05a 

Panel B Volatility OBS Mean Std. dev. Min Max Skewness Kurtosis 
Shapiro 

Wilk 

I 

Carbon 680 187.48 2969.33 0.632 77453.87 25.96 676.23 14.79a 

Oil 680 0.749 0.109 0.651 1.546 3.184 16.823 12.01a 

Gas 680 2.678 1.522 1.956 36.03 16.41 345.16 14.11a 

Coal 380 0.531 1.732 0.116 40.22 19.29 419.77 14.55a 

Gold 680 0.398 0.068 0.338 1.022 3.712 23.757 12.15a 

Silver 680 0.993 0.714 0.556 11.73 8.541 105.07 13.70 a 

Copper 680 0.896 0.450 0.429 3.958 2.975 14.52 11.98 a 

Stock 680 0.080 0.034 0.053 0.388 4.917 34.613 13.07a 

II 

Carbon 1285 1.435 1.262 0.682 29.40 10.79 201.86 15.40a 

Oil 1285 1.444 1.084 0.678 18.07 9.85 128.52 15.67a 

Gas 1285 2.229 0.693 1.756 11.36 6.24 59.97 15.10a 

Coal 1285 1.099 2.832 0.231 75.84 17.33 405.2 16.22a 

Gold 1285 0.555 0.203 0.324 2.74 5.33 42.67 14.71a 

Silver 1285 1.624 0.725 0.877 11.10 5.31 6.72 14.65 a 

Copper 1285 1.239 0.756 0.661 11.56 46.52 68.71 15.12 a 

Stock 1285 4.443 8.729 0.233 194.6 18.64 385.06 16.26a 

III 

Carbon 2051 2.178 2.162 0.643 43.69 9.21 128.32 16.77a 

Oil 2051 1.807 10.44 0.331 350.95 26.66 790.12 17.93a 

Gas 2051 1.826 1.487 0.793 25.85 7.12 76.66 16.66a 

Coal 2051 0.748 3.489 0.101 82.94 16.47 322.33 17.74a 

Gold 2051 0.279 0.122 0.160 2.155 5.33 52.91 15.84a 

Silver 2051 0.655 0.206 0.479 3.450 7.18 71.67 16.68 a 

Copper 2051 0.347 0.098 0.259 1.567 3.90 28.03 15.46 a 

Stock 2051 0.140 0.183 0.056 4.355 14.10 261.70 17.41a 

IV 

Carbon 515 1.673 1.235 0.853 17.839 7.35 81.24 12.62a 

Oil 515 1.302 0.630 0.850 8.219 6.43 57.53 12.69a 

Gas 515 3.775 1.177 1.966 14.750 3.85 25.67 11.49a 

Coal 515 4.175 1.450 3.915 34.612 18.43 379.42 13.78a 

Gold 515 0.244 0.071 0.166 0.671 2.55 11.48 10.85a 

Silver 515 0.833 0.161 0.756 3.060 8.09 8.093 12.90 a 

Copper 515 0.610 0.214 0.480 4.109 9.78 143.90 12.80 a 

Stock 515 0.143 0.064 0.080 0.772 4.53 32.90 11.89a 

 Notes: the superscript “a” indicates the 1% significance level. 

 

 

 

 

 

 

 

  

 

 



Table 4: The contemporaneous causal relationships among Carbon-Energy-Financial-Metal markets 

Phases Markets Causality Directions 

I 

CO2-Oil-Gold-EuroStoxx600 
Oil---->CO2<---- Gold   EuroStoxx600 

 
 

CO2-Gas-Gold-EuroStoxx600 
Gas---->CO2<---- Gold   EuroStoxx600 

 
 

CO2-Oil-Silver-EuroStoxx600 
Oil---->CO2<---- Silver----EuroStoxx600 

 

 

CO2-Gas-Silver-EuroStoxx600 
Gas---->CO2<---- Silver----EuroStoxx600 

 
 

CO2-Oil-Copper-EuroStoxx600 
Oil---->CO2<---- Copper----EuroStoxx600 

 
 

CO2-Gas-Copper-EuroStoxx600 
Gas---->CO2<---- Copper----EuroStoxx600 

 
 

II 

CO2-Oil-Gold-EuroStoxx600 
Oil---->CO2<---- Gold   EuroStoxx600 

 
 

CO2-Gas-Gold-EuroStoxx600 
Gas---->CO2<---- Gold   EuroStoxx600 

 
 

CO2-Coal-Gold-EuroStoxx600 
Coal---->CO2<---- Gold   EuroStoxx600 

 
 

CO2-Oil-Silver-EuroStoxx600 

Oil---->CO2<---- Silver   EuroStoxx600 

 
 

CO2-Gas-Silver-EuroStoxx600 
Gas---->CO2<---- Silver   EuroStoxx600 

 
 

CO2-Coal-Silver-EuroStoxx600 

Coal---->CO2<---- Silver   EuroStoxx600 

 
 

CO2-Oil-Copper-EuroStoxx600 
Oil---->CO2<---- Copper   EuroStoxx600 

 
 

CO2-Gas- Copper -EuroStoxx600 
Gas---->CO2<---- Copper   EuroStoxx600 

 

 

CO2-Coal- Copper -EuroStoxx600 
Coal---->CO2<---- Copper   EuroStoxx600 

 
 

III 

CO2-Oil-Gold-EuroStoxx600 
Oil--->CO2<--- Gold--->EuroStoxx600 

 
 

CO2-Gas-Gold-EuroStoxx600 
Gas--->CO2<---Gold--->EuroStoxx500 

 
 

CO2-Coal-Gold-EuroStoxx600 
Coal-->CO2<--Gold--> EuroStoxx600 

 
 

CO2-Oil-Silver-EuroStoxx600 
Oil--->CO2<--- Silver --- EuroStoxx600 

 
 

CO2-Gas-Silver-EuroStoxx600 
Gas--->CO2<--- Silver --- EuroStoxx600 

 
 

CO2-Coal-Silver-EuroStoxx600 

Coal--->CO2<--- Silver --- EuroStoxx600 

 
 



 

Table 5: Results for the C-Vine Copula models 
Phases Markets Tree, Edge Family P1 P2 Kendall’s Tau 

I 

CO2-Oil-Gold-EuroStoxx600 

 (CO2-Oil) Rotated-Tawn Type 1, 900 -2.07 0.42 -0.27 

 (CO2-Gold) Gaussian 0.08 - 0.05 

 (CO2-EuroStoxx600) Frank 0.7 - 0.08 

CO2-Gas-Gold-EuroStoxx600 

 (CO2-Gas) Rotated-Tawn Type 2, 1800 1.24 0.17 0.06 

 (CO2-Gold) Rotated BB8, 2700 -1.21 -0.85 -0.05 

 (CO2-EuroStoxx600) Frank 0.7 - 0.08 

CO2-Oil-Silver-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 900 -2.07 0.42 -0.27 

 (CO2-Silver) Tawn type 2 1.87 0.32 0.20 

 (CO2-EuroStoxx600) Frank 0.7 - 0.08 

CO2-Gas-Silver-EuroStoxx600 

 (CO2-Gas) 214, Rotated-Tawn Type 2, 1800 1.24 0.17 0.06 

 (CO2-Silver) Tawn type 2 1.87 0.32 0.20 

 (CO2-EuroStoxx600) Frank 0.7 - 0.08 

CO2-Oil-Copper-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 900 -2.07 0.42 -0.27 

 (CO2-Copper) Rotated Tawn type 1, 900 -2.02 0.03 -0.03 

 (CO2-EuroStoxx600) Frank 0.7 - 0.08 

CO2-Gas-Copper-EuroStoxx600 

(CO2-Gas) 214, Rotated-Tawn Type 2, 1800 1.24 0.17 0.06 

 (CO2-Copper) Rotated Tawn type 1, 900 -2.02 0.03 -0.03 

(CO2-EuroStoxx600) Frank 0.7 - 0.08 

II 

CO2-Oil-Gold-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 180 degree 1.57 0.05 0.04 

(CO2-Gold) Rotated Tawn type 2, 180 degree 1.35 0.04 0.02 

(CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Gas-Gold-EuroStoxx600 

(CO2-Gas) Survival Joe 1.06 - 0.03 

(CO2-Gold) Rotated Tawn type 2, 1800 1.35 0.04 0.02 

(CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Coal-Gold-EuroStoxx600 
(CO2-Coal) Survival BB8 1.36 0.96 0.14 

(CO2-Gold) Rotated Tawn type 2, 1800 1.35 0.04 0.02 

 

CO2-Oil-Copper-EuroStoxx600 
Oil--->CO2<--- Copper --- EuroStoxx600 

 

 

CO2-Gas- Copper -EuroStoxx600 
Gas--->CO2<--- Copper --- EuroStoxx600 

 
 

CO2-Coal- Copper -EuroStoxx600 
Coal--->CO2<--- Copper --- EuroStoxx600 

 
 

IV 

CO2-Oil-Gold-EuroStoxx600 
Oil--->CO2<---Gold--->EuroStoxx600 

 
 

CO2-Gas-Gold-EuroStoxx600 
Gas-->CO2<--Gold-->EuroStoxx500 

 
 

CO2-Coal-Gold-EuroStoxx600 
Coal-->CO2<--Gold-->EuroStoxx600 

 
 

CO2-Oil-Silver-EuroStoxx600 
Oil--->CO2<--- Silver   EuroStoxx600 

 
 

CO2-Gas-Silver-EuroStoxx600 

Gas--->CO2<--- Silver   EuroStoxx600 

 
 

CO2-Coal-Silver-EuroStoxx600 
Coal--->CO2<--- Silver   EuroStoxx600 

 
 

CO2-Oil-Copper-EuroStoxx600 
Oil--->CO2<--- Copper   EuroStoxx600 

 

 

CO2-Gas- Copper -EuroStoxx600 
Gas--->CO2<--- Copper   EuroStoxx600 

 
 

CO2-Coal- Copper -EuroStoxx600 
Coal--->CO2<--- Copper   EuroStoxx600 

 
 



(CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Oil-Silver-EuroStoxx600 

(CO2-Oil) Rotated Tawn type 1, 1800 1.57 0.05 0.04 

(CO2-Silver) Survival BB8 1.32 0.98 0.14 

(CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Gas-Silver-EuroStoxx600 

(CO2-Gas) Survival Joe 1.06 0 0.03 

(CO2-Silver) Survival BB8 1.32 0.98 0.14 

 (CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Coal-Silver-EuroStoxx600 

 (CO2-Coal) Survival BB8 1.36 0.96 0.14 

 (CO2-Silver) Survival BB8 1.32 0.98 0.14 

 (CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Oil-Copper-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 1800 1.57 0.05 0.04 

 (CO2-Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01 

 (CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Gas-Copper-EuroStoxx600 

 (CO2-Gas) Survival Joe 1.06 0 0.03 

 (CO2- Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01 

 (CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

CO2-Coal-Copper-EuroStoxx600 

 (CO2-Coal) Survival BB8 1.36 0.96 0.14 

(CO2- Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01 

 (CO2-EuroStoxx600) Rotated Tawn type 1, 900 -2.41 0.21 -0.17 

III 

CO2-Oil-Gold-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 900 -1.38 0.22 -0.10 

 (CO2-Gold) Survival Clayton 0.05 - 0.02 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Gas-Gold-EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 2700 -1.56 0.09 -0.06 

 (CO2-Gold) Survival Clayton 0.05 - 0.02 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Coal-Gold-EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 1, 900 -1.69 0.14 -0.10 

 (CO2-Gold) Survival Clayton 0.05 - 0.02 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Oil-Silver-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 900 -1.38 0.22 -0.10 

 (CO2-Silver) Survival BB8 3.88 0.43 0.19 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Gas- Silver -EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 2700 -1.56 0.09 -0.06 

 (CO2-Silver) Survival BB8 3.88 0.43 0.19 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Coal- Silver -EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 1, 900 -1.69 0.14 -0.10 

 (CO2-Silver) Survival BB8 3.88 0.43 0.19 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Oil-Copper-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 1, 900 -1.38 0.22 -0.10 

 (CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Gas-Copper-EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 2700 -1.56 0.09 -0.06 

 (CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

CO2-Coal-Copper-EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 1, 900 -1.69 0.14 -0.10 

 (CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04 

 (CO2-EuroStoxx600) t 0.36 3.13 0.23 

IV 

CO2-Oil-Gold-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 2, 2700 -1.51 0.06 -0.04 

 (CO2-Gold) Gaussian 0.1 - 0.06 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Gas-Gold-EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 900 -2.27 0.07 -0.07 

 (CO2-Gold) Gaussian 0.10 - 0.06 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Coal-Gold-EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10 

 (CO2-Gold) Gaussian 0.10 - 0.06 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Oil-Silver-EuroStoxx600 

 (CO2-Oil) Rotated Tawn type 2, 2700 -1.51 0.06 -0.04 

 (CO2-Silver) Survival Clayton 0.03 0 0.02 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Gas- Silver -EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 900 -2.27 0.07 -0.07 

 (CO2-Silver) Survival Clayton 0.03 0 0.02 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Coal- Silver -EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10 

 (CO2-Silver) Survival Clayton 0.03 0 0.02 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Oil-Copper-EuroStoxx600  (CO2-Oil) Rotated Tawn type 2, 2700 -1.51 0.06 -0.04 



 (CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Gas-Copper-EuroStoxx600 

 (CO2-Gas) Rotated Tawn type 2, 900 -2.27 0.07 -0.07 

 (CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

CO2-Coal-Copper-EuroStoxx600 

 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10 

 (CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27 

 (CO2-EuroStoxx600) BB7 1.03 0.33 0.16 

 

 

 

Table 6: Time-interval impulse response and time-point impulse response results 

Phase 

Sample Autocorrelations (top), 

Paths (middle), and Posterior Densities (bottom) of 

case (CO2-Oil-Silver-EuroStoxx600) 

Estimation Results (α,β,h) of case 

(CO2-Oil-Silver-EuroStoxx600) 

I 

 

CO2-Oil-Silver-EuroStoxx600 

 

*The posterior mean value should be within the 95% of confidence interval. 

*Geweke value is the convergence value of the parameters does not exceed the 

critical values of 1.96 at 5% significance level. 

*The inefficiency factor measures the effectiveness of sampling, or the number of 

uncorrelated samples. 

Parameter Mean (stdev) 
Interval 

[95%L-95%U] 
Geweke Inef. 

Sb1 1.61 (0.6954) [1.1344-3.7114] 0.030 52.36 

Sb2 0.02 (0.0026) [0.0183-0.0284] 0.613 45.81 

Sa1 0.22 (1.4327) [0.0210-1.3220] 0.049 33.49 

Sa2 0.04 (0.0565) [0.0206-0.1376] 0.537 37.02 

Sh1 1.53 (0.2995) [1.0100-2.1661] 0.982 245.65 

Sh2 1.39 (0.2304) [1.0212-1.9837] 0.907 279.51 

Time impulse graph1 of ↑ 𝜀 𝑂𝑖𝑙 → 𝐶𝑂2 Time-point impulse graph2 of ↑ 𝜀 𝑂𝑖𝑙 → 𝐶𝑂2 

 
 

Time impulse graph of ↑ 𝜀 𝑆𝑖𝑙𝑣𝑒𝑟 → 𝐶𝑂2 Time impulse graph of ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 

                                                             
1 Time impulse graph, response of CO2 to key factors (i.e. multiple market combinations with the highest degree of 

connection with the carbon market) for 1 (red thin solid line), 2 (purple dashed line), 3 (green spot line), and 4 (blue 

thick solid line) days ahead. ↑ε indicates a unit-standard deviation positive shock to the volatility of the carbon price. 
2 Time-point impulse graph, response of CO2 to structural break time of key factors (i.e. multiple market combinations 

with the highest degree of connection with the carbon market). ↑ε indicates a unit-standard deviation positive shock to 

the volatility of the carbon price. 



  

Phase 

Sample Autocorrelations (top), 

Paths (middle), and Posterior Densities (bottom) of 

case (CO2-Coal-Silver-EuroStoxx600) 

Estimation Results (α,β,h) of case 

(CO2-Coal-Silver-EuroStoxx600) 

II 

 

CO2-Coal-Silver-EuroStoxx600 

 

Parameter Mean (stdev) 
Interval 

[95%L-95%U] 
Geweke Inef. 

Sb1 0.02 (0.0026) [0.0195-0.0298] 0.705 52.98 

Sb2 0.02 (0.0020) [0.0168-0.0245] 0.646 49.89 

Sa1 0.04 (0.0073) [0.0344-0.0634] 0.550 102.66 

Sa2 0.03 (0.0049) [0.0255-0.0447] 0.009 99.38 

Sh1 0.79 (0.0624) [0.6773-0.9236] 0.369 48.43 

Sh2 0.92 (0.0550) [0.8212-1.0395] 0.519 29.04 

*The posterior mean value should be within the 95% of confidence interval. 

*Geweke value is the convergence value of the parameters does not exceed the 

critical values of 1.96 at 5% significance level. 

*The inefficiency factor measures the effectiveness of sampling, or the number of 

uncorrelated samples. 

Time impulse graph of ↑ 𝜀 𝐶𝑜𝑎𝑙 → 𝐶𝑂2 Time impulse graph of ↑ 𝜀 𝑆𝑖𝑙𝑣𝑒𝑟 → 𝐶𝑂2 

  

Time impulse graph of ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 Time-point impulse graph of  ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 



 

Phase 

Sample Autocorrelations (top), 

Paths (middle), and Posterior Densities (bottom) of 

case (CO2-Oil-Silver-EuroStoxx600) 

Estimation Results (α,β,h) of case 

(CO2-Oil-Silver-EuroStoxx600) 

III 

 

CO2-Oil-Silver-EuroStoxx600 

*The posterior mean value should be within the 95% of confidence interval. 

*Geweke value is the convergence value of the parameters does not exceed the 

critical values of 1.96 at 5% significance level. 

*The inefficiency factor measures the effectiveness of sampling, or the number of 

uncorrelated samples. 

Parameter Mean (stdev) 
Interval 

[95%L-95%U] 
Geweke Inef. 

Sb1 0.02 (0.0019) [0.0172-0.0246] 0.404 60.55 

Sb2 0.02 (0.0027) [0.0207-0.0310] 0.072 85.10 

Sa1 0.02 (0.0038) [0.0226-0.0378] 0.888 107.89 

Sa2 0.01 (0.0011) [0.0144-0.0185] 0.922 31.58 

Sh1 0.58 (0.0332) [0.5163-0.6463] 0.302 29.75 

Sh2 0.34 (0.0217) [0.3003-0.3870] 0.150 27.76 

Time impulse graph of ↑ 𝜀 𝑂𝑖𝑙 → 𝐶𝑂2 Time impulse graph of ↑ 𝜀 𝑆𝑖𝑙𝑣𝑒𝑟 → 𝐶𝑂2 

  

Time impulse graph of ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 Time-point impulse graph of  ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 

 
 



 
 

p 

Phase 

Sample Autocorrelations (top), 

Paths (middle), and Posterior Densities (bottom) of 

case (CO2-Coal-Copper-EuroStoxx600) 

Estimation Results (α,β,h) of case 

(CO2-Coal-Copper-EuroStoxx600) 

IV 

 

CO2-Coal-Copper-EuroStoxx600 

 

*The posterior mean value should be within the 95% of confidence interval. 

*Geweke value is the convergence value of the parameters does not exceed the 

critical values of 1.96 at 5% significance level. 

*The inefficiency factor measures the effectiveness of sampling, or the number of 

uncorrelated samples. 

Parameter Mean (stdev) 
Interval 

[95%L-95%U] 
Geweke Inef. 

Sb1 0.02 (0.0028) [0.0191-0.0299] 0.300 36.55 

Sb2 0.02 (0.0030) [0.0190-0.0308] 0.607 26.10 

Sa1 0.03 (0.0055) [0.0266-0.0485] 0.472 51.36 

Sa2 0.03 (0.0041) [0.0236-0.0395] 0.124 33.98 

Sh1 0.79 (0.0879) [0.6349-0.9756] 0.282 45.17 

Sh2 0.42 (0.0473) [0.3395-0.5253] 0.789 51.03 

Time impulse graph of ↑ 𝜀 𝐶𝑜𝑎𝑙 → 𝐶𝑂2 Time impulse graph of ↑ 𝜀 𝐶𝑜𝑝𝑝𝑒𝑟 → 𝐶𝑂2 

  

Time impulse graph of ↑ 𝜀 𝐸𝑢𝑟𝑜𝑆𝑡𝑜𝑥𝑥600 → 𝐶𝑂2 Time-point impulse graph of  ↑ 𝜀 𝐶𝑜𝑝𝑝𝑒𝑟 → 𝐶𝑂2 



  

 

 



Online Appendix 

A. Methodology 

Returns 

As in many other studies in this area (see, e.g., Chen et al., 2021; Lin et al., 2021; Bouri and Kamal, 

2023; Abedin et al., 2023), all price variables are transformed (see Eq(A.1)) using natural logarithms, 

where pt refers to price at time t and rt is the returns at time t: 

𝑟𝑡 = 𝑙𝑜𝑔 (
𝑝𝑡

𝑝𝑡 − 1
) 

(A.1) 

Volatilities 

The GARCH model introduced by Bollerslev (1986) as a generalized version of the ARCH aims at 

describing volatility associated with financial time-series data. The basic structure of a GARCH(p,q) 

model is as Eq(A.2). 

𝜎𝑡
2=𝛼0 + ∑ 𝛼𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1  (A.2) 

where εt is the error term of the mean equation for returns rt from Eq(A.1), 𝜎𝑡
2 is the conditional 

variance of εt, 𝛼0, 𝛼𝑗, and 𝛽𝑗 are the model parameters that should satisfy stationary conditions (i.e. 

be non-negative and cumulatively sum to a value below 1). Notice that p and q are the lag orders of 

variance 𝜎𝑡
2 and squared errors 𝜀𝑡

2 in the GARCH(p,q) (Rodríguez and Hernández, 2021; Aras, 2021; 

Jung et al. 2021). 

Unit-Root Tests 

To ascertain the presence of a unit-root in the time-series, the Augmented Dickey-Fuller (ADF) test 

is used, along with Philips-Perron (PP), Kwiatkowski–Phillips–Schmidt–Shin (KPSS), and Zivot-

Andrews (ZA) tests. The null hypothesis of all tests, except for KPSS, is stationarity (a formal 

definition of stationarity can be found in Zhu et al., 2019). In order to facilitate a comparison of the 

performance of the adopted unit-root tests, we have produced Table A.1, where pros and cons of each 

test are highlighted.  

Table A.1: Performance comparison of the unit-root tests 
Tests Merits Demerits Suggestion 

ADF 
1) Reliable for long time-series 

length 

1) Calculates low power for a 

shorter time-series length 

1) Reliable for apt selection of lag 

number 

KPSS 

1) A non-parametric test 

2) Outcome imply stationary if 

the series is strongly stationary 

1) The test statistic is vulnerable to 

type-I errors 

1) Reliable for short time-series length 

and recommend to be used along with 

another test, including ADF and PP 

PP 
1) Reliable for long time-series 
length 

2) A non-parametric test 

1) Low reliability for short and 
moderately longer time series 

length 

1) Reliable for long time series length 



ZA 

1) Utilizes the full sample 

2) Uses a different dummy 

variable for each possible break 

date 

1) Assumes a linear dynamic 

structure over time 

2) The test statistic is vulnerable to 

type-I errors 

1) Reliable for long time series length 

Sources: Saadi and Rahman (2008); Nelson et al. (2001) 

Directed Acyclic Graphs (DAG) 

Causation can informally be defined as the connection between two variables, X and Y, where changes 

in X leads to changes in Y. The main difference between association and causation stands on the issue 

of confounding. Assume that there is no direct causal link between X and Y, but a third variable Z 

causes both X and Y. In this way, despite a strong association between X and Y, a change in X will not 

result in changes to Y, hence Z is called as a confounder. Formally, causation refers to a direct effect 

between variables X and Y, persisting after accounting for confounding. Confounding can be either 

observed or unobserved (latent) (Shen et al. 2020). In many previous studies, Granger (1969) 

causality has been utilized to explore causal relationships among variables. However, this approach 

may not reveal the true causal relationship. Pearl (2000), Spirtes et al. (2000), and Demiralp and 

Hoover (2003), among others, have introduced the Directed Acyclic Graph (DAG) technique to 

identify contemporaneous causal relationships among economic variables. DAGs offer an elegant 

visual representation of directional or causal connections among nodes. These structures find 

applications in diverse domains, including energy and environmental economics (Zhang et al., 2021; 

Rafei and Esmaeili, 2021; Bhatti et al., 2022(a)).  

Generally, DAG analysis uses graphs to illustrate contemporaneous causal relationships among 

variables. Arrows in the graph indicate causal connections between variables. The development of 

Directed Acyclic Graph (DAG) analysis provides an effective tool for examining contemporaneous 

relationships among N variables without loops, consisting of variable nodes connected by directed 

edges (He et al., 2022). For instance, X→Y (X←Y) implies a unidirectional contemporaneous 

causality from X to Y (from Y to X). X↔Y shows bidirectional contemporaneous causality between X 

and Y, while X−Y indicates uncertain directional contemporaneous causality. X Y suggests the absence 

of contemporaneous causality between X and Y (Qi et al., 2020; Shen et al., 2020; Bhatti et al., 2022). 

The Tetrad program offers numerous algorithms for directed graph analysis. The core idea behind 

constraint-based causal discovery algorithms is that distinct causal structures imply different 

independence relationships. Peter and Clark (PC)’s causality algorithm, introduced by Spirtes et al. 

(2000) as the Graph Theoretic Approach (GTA), provides a statistical and mathematical method to 

identify causality in observational data (see Figure A.1). Initially, this algorithm connects variables 

with directionless edges, then utilizes correlation tests to remove edges without correlations (zero-

order) or with high-order partial correlations. The algorithm, based on this approach, eliminates edges 



between variables with a zero-conditional correlation from the first order. If there are N variables, the 

PC max algorithm assesses conditional correlations up to the N-2 order between variables (Bouri et 

al., 2018; Qi et al., 2020; Bhatti et al., 2022(a); Bhatti et al., 2022(b)). In Table A.2, we present a 

comprehensive example of all possible graphs with interpretations for three variables. 

 

 

A) Primary causal graph, B) PC max algorithm starts to modify the graph, C) The X→Y edge is 

removed due to loop, D) Both X→W and Y→W edges are removed due to loop, E) After finding 

structures among variables, F) Final causal graph, after orientation dissemination 

Figure A.1. Visualization of how PC max algorithm works in DAG 

Source: Zhang et al. (2019). 
 

 

 
Table A.2: The contemporaneous causal relationships among 3 variables in the DAG analysis 

All Possible Graphs Interpretation of graph output 

 

 
 

 

 
 

There are edges connecting Y and Z to X.  

Y and Z cause X.  
There are two contemporaneous causal relationships Y→X and Z→X. 

 
 

 

 

 
 

There are edges connecting X to Y and Z.  
X causes both Y and Z.  

There are two contemporaneous causal relationships X→Y and X→Z. 

 
 

 
 

 
 

There are edges connecting Y to X and X to Z. 

X causes Z and Y causes X.  
There are two contemporaneous causal relationships Y→X and X→Z. 

 
 

 

 
 
 

 

X causes both Y and Z.  

Both Y and Z cause X. X causes both Y and Z. 

There is causal relationship between variables but we cannot determine 
the direction of the relationship. 

 
 
 

There is an edge connecting Y to X.  
Y causes X. X causes Z. Z causes X. 

There is contemporaneous causal relationship Y→X. 

X 

Y Z 

X 

Y Z 

X 

Y Z 

X 

Y Z 

X 



 

 
 

There is a causal relationship between X and Z but we cannot determine 

the direction of the relationship. 

 
 

 
 

 
 

There is an edge connecting Z to X.   

Z causes X. Y causes X. X causes Y. 
There is contemporaneous causal relationship Z→X. 

There is causal relationship Y→X, but we cannot determine the 

direction of the relationship. 

 
 

 

 
 
 

There is an edge connecting X to Y.  

Z causes X. X causes Y. X causes Z. 

There is contemporaneous causal relationship X→Y. 

There is causal relationship X→Z, but we cannot determine the 
direction of the relationship. 

 
 
 

 

 
 

There is an edge connecting X to Z.  

Y causes X. X causes Y. X causes Z. 
There is contemporaneous causal relationship X→Z. 

There is causal relationship Z→Y, but we cannot determine the 

direction of the relationship. 

Sources: references in Section 3.4, and Tetrad 7.1.2 program user’s guide. 

 

Canonical Vine (C-Vine) Copulas  

Numerous tools have been introduced for measuring dependencies between variables. Recent studies 

(Tarantola et al., 2018; Chevallier et al., 2019; Pishbahar et al., 2019; Zhou et al., 2020; Ma, 2021; 

Tan et al., 2022; Man et al., 2023; Ghazani et al., 2023) have proved that copulas have several merits, 

which include high flexibility in modeling and estimating marginal distributions, constancy under 

uniform transformations, and representation of the structure of dependencies (Pishbahar et al., 2019).  

Formally, if (X1, X2, …, Xd) is a d-dimensional random vector and the marginal Cumulative 

Distribution Functions (CDF) Fi(xi) = P(Xi<xi), i=1,…,d, are continuous, then the random vector 

(U1, U2, …, Ud) = (F1(x1), F2(x2), …, Fd(xd)) 

has marginals that are uniformly distributed on the interval [0,1]. 

The copula of (X1, X2, …, Xd), C(.), is the joint CDF of (U1, U2, …, Ud), that is: 

C(U1, U2, …, Ud) = P(U1≤u1; U2≤u2; …; Ud≤ud) = P(X1≤F1
-1(u1); X2≤F2

-1(u2); …; Xd≤Fd
-1(ud)) (A.3) 

In Eq(A.3), the copula C(.) contains all information on the dependence structure between the 

components (X1, X2, …, Xd), while the marginal CDFs Fi(.) contain all information on the marginal 

distributions of Xi. 

Y Z 

X 

Y Z 

X 

Y Z 

X 

Y Z 



Sklar (1959)’s theorem shows that every multivariate CDF H(x1, x2, …, xd) = P(X1≤x1, X2≤x2, …, 

Xd≤xd) of a random vector (X1, X2, …, Xd) can be expressed in terms of its marginals and a copula 

C(.), that is: 

H(x1, x2, …, xd) = C(F1(x1), F2(x2), …, Fd(xd))  

and 

h(x1, x2, …, xd) = c(F1(x1), F2(x2), …, Fd(xd)) f1(x1) f2(x2) …. fd(xd)            (A.4) 

By assuming that the marginals and copula function are distinguishable, Eq(A.4) is the density 

representation of C(.). Specifically, 𝑓𝑖(𝑥𝑖), i=1,…,d, are the marginal densities and c(. ) is the copula 

density, which can be written as Eq(A.5) (Chevallier et al., 2019; Bouri and Kamal, 2023).  

c(u1, u2, … … , ud ) =
𝜕𝑑C(u1, u2, … … , ud, )

𝜕𝑢1𝜕𝑢2 … . 𝜕𝑢𝑑
 

(A.5) 

In other words, the structure of dependence is represented by the product of the multivariate density, 

which serves as the output of the marginal densities, and the multivariate copula density. This 

characteristic involves decoupling univariate marginal distributions from dependence estimation. 

Copula functions are categorized into two main groups: elliptical and Archimedean. The first group 

has a definite functional form, such as Gaussian and t-student, while Archimedean copulas are 

obtained from generative functions, including Clayton, Gambel, Frank, Joe, BB, etc. However, 

copulas have limitations in modeling multivariate dependence for a large number of variables. To 

overcome this problem, Vine Copulas, including Regular, Canonical, and Drawable Vine copulas, 

have been introduced (Joe, 1997). These copulas have been developed to measure and describe 

multivariate dependencies by using a cascade of pair copulas and their hierarchical structure, 

capturing Conditional Dependence (CD) between variables. In our paper we focus on a particular 

type of Vine models that has been extensively employed in empirical studies, namely C-Vine copulas. 

The multivariate density of a C-Vine copula is defined as follows: 

f(𝑥1, 𝑥2, … . . , 𝑥𝑑) = 

                                     ∏ 𝑓𝑘(𝑥𝑘) ∏ 𝐶1,ℎ(𝐹1(𝑥1), 𝐹ℎ(𝑥ℎ)) ∏ ∏ 𝐶𝑗𝑗+1

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=2

𝑑

ℎ=2

𝑑

𝑘=1

|1, … 𝑗

− 1(𝐹(𝑥𝑗|𝑥1, … 𝑥𝑗−1), (𝐹(𝑥𝑗+1|𝑥1, … 𝑥𝑗−1). 

(A.6) 

According to Joe (1997), the CD between two variables, 𝑥𝑖 and 𝑥𝑗, can be represented by Eq(A.7).  



𝑓𝑖|𝑗(𝑥𝑖|𝑥𝑗) = 𝑐𝑖|𝑗[𝐹𝑖(𝑥𝑖), 𝐹𝑗(𝑥𝑗)] =  
𝜕𝐶𝑖𝑗[𝐹𝑖(𝑥𝑖), 𝐹𝑗(𝑥𝑗)]

𝜕𝐹𝑗(𝑥𝑗)
 

(A.7) 

where, ci|j refers to the CD of variable i given variable j with a joint distribution function Cij. The 

parameters of the model and the marginal distribution parameters are estimated using Maximum 

Likelihood (MLE) (Pishbahar et al., 2019; Czado et al., 2022; Uddin et al., 2018).  

The dependence structure can be visually represented through a hierarchical tree. C-Vine Copula trees 

exhibit a “star” structure (see Figure A.2), wherein the initial tree (T1) has its first root node capturing 

the relationship between two random variables through bivariate copulas, as depicted by the 

connecting edge between the associated nodes. In the subsequent trees, the edges from the preceding 

stage transition into the nodes of the successive trees. At each stage, a single variable assumes the 

primary role as the root node, chosen as the node with the highest value of Kendall’s tau (τ) 

(Brechmann and Schepsmeier, 2013). 

 

 

 

 

 

Figure A2. Example of 4-dimensional C-Vine Copula  

Source: Liu et al. (2019) 

τ is often used to measure the dependence structure, as linear correlation coefficients are 

inappropriate for capturing non-linear dependence. It can be defined as in Eq (A.8):  

𝜏(𝑋1, 𝑋2) = 𝑃((𝑋11 − 𝑋21)(𝑋21 − 𝑋22) > 0) − 𝑃((𝑋11 − 𝑋21)(𝑋21 − 𝑋22) < 0) (A.8) 

where both (𝑋11 − 𝑋21) and(𝑋21 − 𝑋22) are independent, and 𝜏(𝑋1, 𝑋2) is invariant. The tail 

dependence coefficient (λ) describes the degree of association (Czado et al., 2022): 

𝜆𝑢𝑝𝑝𝑒𝑟 = lim
𝑡→1−

𝑃(𝑋2 > 𝐹2
−1(𝑡)| 𝑋1 > 𝐹1

−1(𝑡)) = lim
𝑡→1−

1 − 2𝑡 + 𝐶(𝑡, 𝑡)

1 − 𝑡
 

(A.9) 

𝜆𝐿𝑜𝑤𝑒𝑟 = lim
𝑡→0+

𝑃(𝑋2 ≤ 𝐹2
−1(𝑡)| 𝑋1 ≤ 𝐹1

−1(𝑡)) = lim
𝑡→0+

𝐶(𝑡, 𝑡)

𝑡
 

(A.10) 

 



Time-Varying Vector Parameter Autoregressive models with Stochastic Volatility 

(TVP-VAR-SV model) 

Structural Vector AutoRegressive (SVAR) models are widely used to represent the dynamic 

relationships among multiple time series and deal with the problem of endogeneity. Unfortunately, 

SVAR models are not designed to deal with non-linear relationships. A number of authors (see, 

among others, Primiceri, 2005 and Nakajima, 2011) have generalized the SVAR models to Time-

Varying Parameter Vector Auto Regressive models incorporating Stochastic Volatility (TVP-VAR-

SV), which assume that all parameters follow random walk processes. This class of models is 

commonly used in energy economics and finance (see, e.g., Pakrooh and Pishbahar, 2020; Yuan et 

al. 2021; Lang et al., 2023; Lin et al., 2023; He, 2023; Lu et al., 2023; Thanh et al., 2022; Lin et al., 

2021; Yuan et al., 2021; Gang and Liu, 2020).   

Following Primiceri (2005) and Nakajima (2011), a TVP-VAR-SV model is based on the SVAR 

structure of Eq(A.11):  

𝐴𝑌𝑡 = 𝐹1𝑌𝑡−1 + ⋯ . . +𝐹𝑠𝑌𝑡−𝑠 + 𝑢𝑡                     t=s+1,….,n (A.11) 

where 𝑌𝑡 is k×1 dimensional column vector of observed endogenous variables, and 𝐴, 𝐹1, … , 𝐹𝑠 are 

k×k dimensional coefficient matrices. 𝑢𝑡 denotes a k×1 structural shock vector which is assumed to 

normally distributed, i.e. 𝑢𝑡~𝑁(0, Σ), with Σ diagonal. 

To ensure the simultaneity of structural shocks, A is lower triangular. 

We can solve for Yt in Eq(A.11) and obtain the reduced form: 

𝑌𝑡 = 𝐵1𝑌𝑡−1 + ⋯ . . +𝐵𝑠𝑌𝑡−𝑠 + 𝐴−1Σ𝜀𝑡         𝜀𝑡~𝑁(0, 𝐼𝑘),         𝑡 = 𝑠 + 1, … . , 𝑛     (A.12) 

where 𝐵𝑖 = 𝐴−1𝐹𝑖, i=1,2,…s. Define 𝑋𝑡 = 𝐼𝑘 ⊗ (𝑦𝑡
′, … , 𝑦𝑠

′), with ⊗ indicating the Kronecker 

product. Then, Eq(A.12) can be written as: 

𝑌𝑡 = 𝑋𝑡𝛽 + 𝐴−1𝛴𝜀𝑡 (A.13) 

Assume that all parameters in Eq(A.13) can change over time. Hence, the reduced form SVAR of 

Eq(A.13) becomes: 

𝑌𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡
−1 (A.14) 



𝛽𝑡, 𝐴𝑡, and Σt are time varying coefficients; 𝛼𝑡 = (𝛼21, … … … … , 𝛼𝑘,𝑘−1) is the low-triangular 

accumulation vectors of matrix 𝐴𝑡, and ℎ𝑡 = (ℎ1𝑡 , … … , ℎ𝑘𝑡  ), ℎ𝑗𝑡 = log 𝜎𝑗𝑡
2 , j=1,…,k, t=s+1,…..,n. 

The parameters in Eq(A.14) are subject to the following random walk processes: 

𝛽𝑡+1 = 𝛽𝑡 + 𝑢𝑏𝑡 

𝛼𝑡+1 = 𝛼𝑡 + 𝑢𝑎𝑡                 (A.15) 

ℎ𝑡+1 = ℎ𝑡 + 𝑢ℎ𝑡 

(

𝑢𝛽𝑡

𝑢𝛼𝑡

𝑢ℎ𝑡

) ~𝑁 (

Σ𝛽 0 0

0 Σ𝛼 0
0 0 Σℎ

) 

where 𝛽𝑠+1 ∼ 𝑁(𝜇𝛽0
, Σ𝛽0

), 𝛼𝑠+1 ∼ 𝑁(𝜇𝛼0
, Σ𝛼0

), and ℎ𝑠+1 ∼ 𝑁(𝜇ℎ0
, Σℎ0

).  

The TVP-VAR-SV model can be estimated by using the Markov Chain Monte Carlo (MCMC) 

simulation sampling method. With this method, we can obtain the estimated constant and time-

varying parameters. Based on the estimated parameters, we can calculate impulse response functions, 

including time-point and equal-interval impulse responses (Primiceri, 2005; Nakajima, 2011; Gong 

and Liu, 2020; Lin et al., 2021; He, 2023; Lin et al., 2023).  

 

 

 

 



B.Results 

Table B.1: Returns 

Markets I: 2005-04-24 – 2007-12-31 II: 2008-01-02-2012-12-31 III: 2013-01-02- 2020-12-31 IIII:2021-01-04- 2022-12-30 

CO2 

    

Oil 

    

Gas 

    



Coal 

    

Gold 

    

Silver 

 

 

  



Copper 

    

Stock 

    

 

 

 

 

 

 

Table B.2: Volatilities 

Markets I: 2005-04-24 – 2007-12-31 II: 2008-01-02-2012-12-31 III: 2013-01-02- 2020-12-31 IIII:2021-01-04- 2022-12-30 



CO2 

    

Oil 

  
  

Gas 

    



Coal 

    

Gold 

    

Silver 

   
 



Copper 

   
 

Stock 

    

 

 

 

 

 

 

 

 

 



Table B.3: GARCH Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Order of ARCH model 
2 Order of GARCH model 

Phases Volatility ARCH lag order (p) GARCH lag order (q) Model 

I 

CO2 2 1 GARCH(2,1) 

Oil 4 - ARCH(4) 

Gas 5 - ARCH(5) 

Coal 1 - ARCH(1) 

Gold 5 - ARCH(5) 

Silver 1 1 GARCH(1,1) 

Copper 4 1 GARCH(4,1) 

Eurostoxx600 2 4 GARCH(2,4) 

II 

CO2 4 3 GARCH(4,3) 

Oil 1 1 GARCH(1,1) 

Gas 1 5 GARCH(1,5) 

Coal 1 - ARCH(1) 

Gold 5 1 GARCH(5,1) 

Silver 3 4 GARCH(3,4) 

Copper 1 3 GARCH(1,3) 

Eurostoxx600 3 4 GARCH(3,4) 

III 

CO2 1 3 GARCH(1,3) 

Oil 3 3 GARCH(3,3) 

Gas 4 2 GARCH(4,2) 

Coal 2 1 GARCH(2,1) 

Gold 4 4 GARCH(4,4) 

Silver 1 1 GARCH(1,1) 

Copper 5 2 GARCH(5,2) 

Eurostoxx600 3 5 GARCH(3,5) 

IIII 

CO2 1 3 GARCH(1,3) 

Oil 5 2 GARCH(5,2) 

Gas 5 4 GARCH(5,4) 

Coal 1 - ARCH(1) 

Gold 2 4 GARCH(2,4) 

Silver 1 - ARCH(1) 

Copper 4 - ARCH(4) 

Eurostoxx600 2 1 GARCH(2,1) 



 

Table B.4: Unit-root tests 

Volatility 
Time 
period 

ADF PP KPSS Zandrews 

Intercept 
Trend and 
Intercept 

None Intercept 
Trend and 
Intercept 

None Intercept 
Trend and 
Intercept 

Intercept Trend 
Intercept 
and Trend 

Break 
Points 

CO2 Phase I 
7.12 

(1.00) 

7.07 

(1.00) 

2.01 

(0.98) 

-25.95*** 

(0.00) 

-26.06*** 

(0.00) 

-25.87*** 

(0.00) 
0.36* 0.13* -26.16 

(0.15) 

-26.69*** 

(0.00) 

-26.87** 

(0.04) 

2006-11-23 
2006-11-23 
2006-11-23 

Oil Phase I 
-25.06*** 

(0.00) 
-25.04*** 

(0.00) 
-0.18 
(0.62) 

-25.06*** 

(0.00) 
-25.04*** 

(0.00) 
-2.38*** 

(0.01) 
0.05 0.05 

-25.18*** 

(0.01) 
-25.06 
(0.21) 

25.32*** 

(0.00) 

2006-08-14 
2006-11-15 

2005-08-12 

Gas Phase I 
-25.57*** 

(0.00) 
-24.55*** 

(0.00) 
1.18 

(0.21) 
-24.57*** 

(0.00) 
-24.55*** 

(0.00) 
-12.36*** 

(0.00) 
0.17 0.17 

-24.95*** 

(0.00) 
-24.77* 

(0.09) 
-25.02*** 

(0.00) 

2006-05-16 
2006-04-27 
2006-05-16 

Coal Phase I 
-23.97*** 

(0.00) 
-23.99*** 

(0.00) 
-14.43*** 

(0.00) 
-24.07*** 

(0.00) 
24.09*** 

(0.00) 
23.99*** 

(0.00) 
0.17 0.12* -16.31** 

(0.02) 
-16.32** 

(0.02) 
-16.33 

(0.36) 

2006-11-23 
2006-10-22 
2006-11-19 

Gold Phase I 
-25.56*** 

(0.00) 
-25.54*** 

(0.00) 
-0.21 
(0.60) 

-25.56*** 

(0.00) 
-25.54*** 

(0.00) 
-1.91** 

(0.05) 
0.24 0.25*** -25.91*** 

(0.00) 
-25.87*** 

(0.00) 
-26.17*** 

(0.00) 

2005-10-22 
2006-01-24 
2006-02-23 

Silver Phase I 
-11.22*** 

(0.00) 
-11.21*** 

(0.00) 
-3.31*** 

(0.00) 
-18.53*** 

(0.00) 
-18.52*** 

(0.00) 
-9.84*** 

(0.00) 
0.30 0.29*** -8.61*** 

(0.00) 
-8.39*** 

(0.00) 
-9.12*** 

(0.00) 

2005-12-19 
2006-01-02 
2006-02-09 

Copper Phase I 
-10.38*** 

(0.00) 
-10.37*** 

(0.00) 
-0.99 
(0.28) 

-13.41*** 

(0.00) 
-13.40*** 

(0.00) 
-3.99*** 

(0.00) 
0.26 0.25*** -11.51*** 

(0.00) 

-11*** 

(0.00) 

-11.64*** 

(0.00) 

2006-01-03 
2006-02-05 
2006-01-03 

Eurostoxx600 Phase I 
-9.40*** 

(0.00) 
-9.89*** 

(0.00) 
-1.51 

(0.12) 
-26.86*** 

(0.00) 
-26.62*** 

(0.00) 
-6.76*** 

(0.00) 
0.85*** 0.05 

-9.99*** 

(0.00) 
-9.69 

(0.38) 
-9.99*** 

(0.00) 

2006-02-16 
2006-05-30 
2006-02-14 

CO2 Phase II 
-6.90*** 

(0.00) 
-6.97*** 

(0.00) 
-2.92*** 

(0.00) 
-34.86*** 

(0.00) 
-34.81*** 

(0.00) 
-24.84*** 

(0.00) 
0.31 0.20** -10.86*** 

(0.00) 
-10.45*** 

(0.00) 
-11.33*** 

(0.00) 

2010-06-13 

2009-12-27 
2010-09-28 

Oil Phase II 
-2.51 

(0.11) 

-2.99 

(0.13) 

-0.83 

(0.35) 

-40.86*** 

(0.00) 

-39.24*** 

(0.00) 

-26.72*** 

(0.00) 
1.39*** 0.21** -11.10*** 

(0.00) 

-10.87 

(0.71) 

-14.13*** 

(0.00) 

2008-10-12 
2008-07-28 
2008-10-06 

Gas Phase II 
-10.83*** 

(0.00) 
-10.92*** 

(0.00) 
-1.22 
(0.20) 

-39.72*** 

(0.00) 
-39.61*** 

(0.00) 
-6.90*** 

(0.00) 
0.52** 0.28*** 

-10.88** 

(0.03) 
-10.82 

(0.15) 
-11.97*** 

(0.00) 

2008-10-30 
2008-12-29 

2009-04-22 

Coal Phase II 
-6.92*** 

(0.00) 
-6.97*** 

(0.00) 
-2.95*** 

(0.00) 
-34.86*** 

(0.00) 
-34.81*** 

(0.00) 
-24.84*** 

(0.00) 
0.31 0.20** -10.86*** 

(0.00) 
-10.45*** 

(0.00) 
-11.33*** 

(0.00) 

2010-06-13 
2009-12-27 
2010-09-28 

Gold Phase II 
-7.03*** 

(0.00) 
-7.49*** 

(0.00) 
-0.91 
(0.32) 

-45.00*** 

(0.00) 
-43.97*** 

(0.00) 
-10.01*** 

(0.00) 
1.00*** 0.21*** -10.85*** 

(0.00) 
-10.45*** 

(0.00) 
-12.08*** 

(0.00) 

2008-11-17 
2008-11-17 
2008-11-17 

Silver Phase II -6.08*** -6.31*** -1.52 -26.22*** -25.93*** -6.15*** 0.58** 0.15** -9.98*** -9.34*** -11.50*** 2008-09-07 



(0.00) (0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 2008-09-07 
2008-09-07 

Copper Phase II 
-7.16*** 

(0.00) 
-7.41*** 

(0.00) 
-1.92*** 

(0.05) 
-37.75*** 

(0.00) 
-38.01*** 

(0.00) 
-14.74*** 

(0.00) 
0.62** 0.10 

-8.68*** 

(0.00) 
-8.67*** 

(0.00) 
-10.17*** 

(0.00) 

2008-10-13 
2008-07-22 
2008-08-10 

Eurostoxx600 Phase II 
-6.02*** 

(0.00) 
-6.08*** 

(0.00) 
-3.20** 

(0.04) 
-39.45*** 

(0.00) 
-39.39*** 

(0.00) 
-44.27*** 

(0.00) 
0.17 0.05 

-8.76*** 

(0.00) 
-8.60*** 

(0.00) 
-9.42*** 

(0.00) 

2008-12-17 
2008-12-09 
2008-12-17 

CO2 Phase III 
-7.98*** 

(0.00) 
-8.18*** 

(0.00) 
-3.62*** 

(0.00) 
-41.87*** 

(0.00) 
-41.62*** 

(0.00) 
-34.46*** 

(0.00) 
0.63** 0.30*** -11.30*** 

(0.00) 
-11.47*** 

(0.00) 
-11.87*** 

(0.00) 

2013-11-23 
2014-01-21 
2013-11-23 

Oil Phase III 
-8.35*** 

(0.00) 
-8.51*** 

(0.00) 
-7.85*** 

(0.00) 
-22.03*** 

(0.00) 
-22.15*** 

(0.00) 
-21.25*** 

(0.00) 
0.53** 0.11 

-17.50*** 

(0.00) 
-17.36** 

(0.05) 
-17.55*** 

(0.00) 

2017-10-11 
2017-02-12 
2017-10-11 

Gas Phase III 
-12.18*** 

(0.00) 
-12.39*** 

(0.00) 
-4.04*** 

(0.00) 
-44.73*** 

(0.00) 
-44.49*** 

(0.00) 
-31.38*** 

(0.00) 
0.50** 0.15** -12.66*** 

(0.00) 
-12.90*** 

(0.00) 
-13.03*** 

(0.00) 

2017-10-11 

2017-10-11 
2017-04-08 

Coal Phase III 
-40.88*** 

(0.00) 

-41.07*** 

(0.00) 

-39.29*** 

(0.00) 

-40.85*** 

(0.00) 

-40.98*** 

(0.00) 

-40.69*** 

(0.00) 
1.10*** 0.11 

-41.22*** 

(0.00) 

-41.19*** 

(0.00) 

-41.24*** 

(0.00) 

2015-11-19 
2017-10-10 
2015-11-19 

Gold Phase III 
-19.98*** 

(0.00) 
-20.29*** 

(0.00) 
-2.51** 

(0.01) 
-19.98*** 

(0.00) 
-20.31*** 

(0.00) 
-7.68** 

(0.01) 
0.98*** 0.16** -14.37*** 

(0.00) 
-14.35*** 

(0.00) 
-14.41*** 

(0.00) 

2017-10-09 
2017-04-19 

2015-11-06 

Silver Phase III 
-9.16*** 

(0.00) 
-9.25*** 

(0.00) 
-1.40 

(0.14) 
-51.38*** 

(0.00) 
-51.23*** 

(0.00) 
-5.49*** 

(0.00) 
0.44* 0.31*** -12.06*** 

(0.00) 
-12.18*** 

(0.00) 
-12.21 

(0.18) 

2017-09-03 
2017-06-25 
2017-09-03 

Copper Phase III 
-16.06*** 

(0.00) 
-16.07*** 

(0.00) 
-1.41 

(0.14) 
-38.52*** 

(0.00) 
-38.50*** 

(0.00) 
-5.24*** 

(0.00) 
0.13 0.09 

-16.23*** 

(0.00) 
-16.51*** 

(0.00) 
-16.46*** 

(0.00) 

2014-05-08 
2014-05-08 
2014-05-08 

Eurostoxx600 Phase III 
-9.04*** 

(0.00) 
-9.13*** 

(0.00) 
-4.57*** 

(0.00) 
-50.51*** 

(0.00) 
-50.41*** 

(0.00) 
-44.98*** 

(0.00) 
0.26 0.11 

-9.75*** 

(0.00) 
-9.44*** 

(0.00) 
-9.76*** 

(0.00) 

2015-06-22 
2017-04-26 
2015-06-22 

CO2 Phase IV 
-5.37*** 

(0.00) 
-5.40*** 

(0.00) 
-2.32*** 

(0.01) 
-18.88*** 

(0.00) 
-18.79*** 

(0.00) 
-9.95*** 

(0.00) 
0.26 0.16** -6.03*** 

(0.00) 
-5.83*** 

(0.00) 
-6.17* 

(0.07) 

2021-11-10 
2021-11-02 
2021-10-28 

Oil Phase IV 
-7.13*** 

(0.00) 
-7.25*** 

(0.00) 
-1.54*** 

(0.01) 
-25.76*** 

(0.00) 
-25.59*** 

(0.00) 
-7.77*** 

(0.00) 
0.33 0.07 

-7.82*** 

(0.00) 
-7.60*** 

(0.00) 
-8.14*** 

(0.01) 

2021-11-01 
2021-11-10 
2021-11-01 

Gas Phase IV 
-5.62*** 

(0.00) 
-6.35*** 

(0.00) 
-0.57 

(0.46) 
-22.16*** 

(0.00) 
-21.85*** 

(0.00) 
-3.19*** 

(0.00) 
1.08*** 0.12* -6.97*** 

(0.00) 
-6.63*** 

(0.00) 
-7.06*** 

(0.00) 

2021-10-30 
2021-10-05 
2021-10-30 

Coal Phase IV 
-21.62*** 

(0.00) 
-21.61*** 

(0.00) 
-0.97 

(0.29) 
-21.62*** 

(0.00) 
-21.61*** 

(0.00) 
-3.97*** 

(0.00) 
0.14 0.13* 

-21.88*** 

(0.01) 
-21.79*** 

(0.01) 
-21.97*** 

(0.01) 

2021-08-09 

2021-08-10 
2021-08-09 

Gold Phase IV -9.35*** -10.05*** -0.84 -26.30*** -26.08*** -3.53*** 1.06*** 0.18** -10.63*** -10.65*** -11.01*** 2022-03-15 



(0.00) (0.00) (0.34) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 2022-05-03 
2022-03-16 

Silver Phase IV 
-17.68*** 

(0.00) 
-17.68*** 

(0.00) 
-0.41 

(0.53) 
-17.58*** 

(0.00) 
-17.58*** 

(0.00) 
-1.71* 

(0.08) 
0.18 0.12* -17.82*** 

(0.00) 
-16.31*** 

(0.00) 
-17.90*** 

(0.00) 

2021-05-03 
2021-05-03 
2021-03-29 

Copper Phase IV 
-7.58*** 

(0.00) 
-7.76*** 

(0.00) 
-1.16 

(0.22) 
-22.57*** 

(0.00) 
-22.62*** 

(0.00) 
-5.21*** 

(0.00) 
0.39* 0.05 

-7.88*** 

(0.00) 
-7.84*** 

(0.00) 
-7.87 

(0.31) 

2022-01-30 
2021-08-16 
2021-01-30 

vrEurostoxx600 Phase IV 
-15.42*** 

(0.00) 
-15.69*** 

(0.00) 
-0.99 

(0.28) 
-15.43*** 

(0.00) 
-15.69*** 

(0.00) 
-4.26*** 

(0.00) 
0.84*** 0.18** -9.04*** 

(0.00) 
-8.86*** 

(0.00) 
-9.49*** 

(0.00) 

2021-10-05 
2021-11-09 
2021-10-07 
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